Whakaoti mō x
x=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{6x+4}=38-3x
Me tango 3x mai i ngā taha e rua o te whārite.
\left(\sqrt{6x+4}\right)^{2}=\left(38-3x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
6x+4=\left(38-3x\right)^{2}
Tātaihia te \sqrt{6x+4} mā te pū o 2, kia riro ko 6x+4.
6x+4=1444-228x+9x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(38-3x\right)^{2}.
6x+4-1444=-228x+9x^{2}
Tangohia te 1444 mai i ngā taha e rua.
6x-1440=-228x+9x^{2}
Tangohia te 1444 i te 4, ka -1440.
6x-1440+228x=9x^{2}
Me tāpiri te 228x ki ngā taha e rua.
234x-1440=9x^{2}
Pahekotia te 6x me 228x, ka 234x.
234x-1440-9x^{2}=0
Tangohia te 9x^{2} mai i ngā taha e rua.
-9x^{2}+234x-1440=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-234±\sqrt{234^{2}-4\left(-9\right)\left(-1440\right)}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, 234 mō b, me -1440 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-234±\sqrt{54756-4\left(-9\right)\left(-1440\right)}}{2\left(-9\right)}
Pūrua 234.
x=\frac{-234±\sqrt{54756+36\left(-1440\right)}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
x=\frac{-234±\sqrt{54756-51840}}{2\left(-9\right)}
Whakareatia 36 ki te -1440.
x=\frac{-234±\sqrt{2916}}{2\left(-9\right)}
Tāpiri 54756 ki te -51840.
x=\frac{-234±54}{2\left(-9\right)}
Tuhia te pūtakerua o te 2916.
x=\frac{-234±54}{-18}
Whakareatia 2 ki te -9.
x=-\frac{180}{-18}
Nā, me whakaoti te whārite x=\frac{-234±54}{-18} ina he tāpiri te ±. Tāpiri -234 ki te 54.
x=10
Whakawehe -180 ki te -18.
x=-\frac{288}{-18}
Nā, me whakaoti te whārite x=\frac{-234±54}{-18} ina he tango te ±. Tango 54 mai i -234.
x=16
Whakawehe -288 ki te -18.
x=10 x=16
Kua oti te whārite te whakatau.
3\times 10+\sqrt{6\times 10+4}=38
Whakakapia te 10 mō te x i te whārite 3x+\sqrt{6x+4}=38.
38=38
Whakarūnātia. Ko te uara x=10 kua ngata te whārite.
3\times 16+\sqrt{6\times 16+4}=38
Whakakapia te 16 mō te x i te whārite 3x+\sqrt{6x+4}=38.
58=38
Whakarūnātia. Ko te uara x=16 kāore e ngata ana ki te whārite.
x=10
Ko te whārite \sqrt{6x+4}=38-3x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}