Whakaoti mō a
a=\frac{8}{3}-4c-2b
Whakaoti mō b
b=-\frac{a}{2}-2c+\frac{4}{3}
Tohaina
Kua tāruatia ki te papatopenga
3a+12c=8-6b
Tangohia te 6b mai i ngā taha e rua.
3a=8-6b-12c
Tangohia te 12c mai i ngā taha e rua.
3a=8-12c-6b
He hanga arowhānui tō te whārite.
\frac{3a}{3}=\frac{8-12c-6b}{3}
Whakawehea ngā taha e rua ki te 3.
a=\frac{8-12c-6b}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
a=\frac{8}{3}-4c-2b
Whakawehe 8-6b-12c ki te 3.
6b+12c=8-3a
Tangohia te 3a mai i ngā taha e rua.
6b=8-3a-12c
Tangohia te 12c mai i ngā taha e rua.
6b=8-12c-3a
He hanga arowhānui tō te whārite.
\frac{6b}{6}=\frac{8-12c-3a}{6}
Whakawehea ngā taha e rua ki te 6.
b=\frac{8-12c-3a}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
b=-\frac{a}{2}-2c+\frac{4}{3}
Whakawehe 8-3a-12c ki te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}