Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=14 ab=39\left(-9\right)=-351
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 39x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,351 -3,117 -9,39 -13,27
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -351.
-1+351=350 -3+117=114 -9+39=30 -13+27=14
Tātaihia te tapeke mō ia takirua.
a=-13 b=27
Ko te otinga te takirua ka hoatu i te tapeke 14.
\left(39x^{2}-13x\right)+\left(27x-9\right)
Tuhia anō te 39x^{2}+14x-9 hei \left(39x^{2}-13x\right)+\left(27x-9\right).
13x\left(3x-1\right)+9\left(3x-1\right)
Tauwehea te 13x i te tuatahi me te 9 i te rōpū tuarua.
\left(3x-1\right)\left(13x+9\right)
Whakatauwehea atu te kīanga pātahi 3x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{3} x=-\frac{9}{13}
Hei kimi otinga whārite, me whakaoti te 3x-1=0 me te 13x+9=0.
39x^{2}+14x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-14±\sqrt{14^{2}-4\times 39\left(-9\right)}}{2\times 39}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 39 mō a, 14 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 39\left(-9\right)}}{2\times 39}
Pūrua 14.
x=\frac{-14±\sqrt{196-156\left(-9\right)}}{2\times 39}
Whakareatia -4 ki te 39.
x=\frac{-14±\sqrt{196+1404}}{2\times 39}
Whakareatia -156 ki te -9.
x=\frac{-14±\sqrt{1600}}{2\times 39}
Tāpiri 196 ki te 1404.
x=\frac{-14±40}{2\times 39}
Tuhia te pūtakerua o te 1600.
x=\frac{-14±40}{78}
Whakareatia 2 ki te 39.
x=\frac{26}{78}
Nā, me whakaoti te whārite x=\frac{-14±40}{78} ina he tāpiri te ±. Tāpiri -14 ki te 40.
x=\frac{1}{3}
Whakahekea te hautanga \frac{26}{78} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 26.
x=-\frac{54}{78}
Nā, me whakaoti te whārite x=\frac{-14±40}{78} ina he tango te ±. Tango 40 mai i -14.
x=-\frac{9}{13}
Whakahekea te hautanga \frac{-54}{78} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{1}{3} x=-\frac{9}{13}
Kua oti te whārite te whakatau.
39x^{2}+14x-9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
39x^{2}+14x-9-\left(-9\right)=-\left(-9\right)
Me tāpiri 9 ki ngā taha e rua o te whārite.
39x^{2}+14x=-\left(-9\right)
Mā te tango i te -9 i a ia ake anō ka toe ko te 0.
39x^{2}+14x=9
Tango -9 mai i 0.
\frac{39x^{2}+14x}{39}=\frac{9}{39}
Whakawehea ngā taha e rua ki te 39.
x^{2}+\frac{14}{39}x=\frac{9}{39}
Mā te whakawehe ki te 39 ka wetekia te whakareanga ki te 39.
x^{2}+\frac{14}{39}x=\frac{3}{13}
Whakahekea te hautanga \frac{9}{39} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{14}{39}x+\left(\frac{7}{39}\right)^{2}=\frac{3}{13}+\left(\frac{7}{39}\right)^{2}
Whakawehea te \frac{14}{39}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{39}. Nā, tāpiria te pūrua o te \frac{7}{39} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{14}{39}x+\frac{49}{1521}=\frac{3}{13}+\frac{49}{1521}
Pūruatia \frac{7}{39} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{14}{39}x+\frac{49}{1521}=\frac{400}{1521}
Tāpiri \frac{3}{13} ki te \frac{49}{1521} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{7}{39}\right)^{2}=\frac{400}{1521}
Tauwehea x^{2}+\frac{14}{39}x+\frac{49}{1521}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{39}\right)^{2}}=\sqrt{\frac{400}{1521}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{39}=\frac{20}{39} x+\frac{7}{39}=-\frac{20}{39}
Whakarūnātia.
x=\frac{1}{3} x=-\frac{9}{13}
Me tango \frac{7}{39} mai i ngā taha e rua o te whārite.