Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

385=4x^{2}+10x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+2 ki te 2x+3 ka whakakotahi i ngā kupu rite.
4x^{2}+10x+6=385
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x^{2}+10x+6-385=0
Tangohia te 385 mai i ngā taha e rua.
4x^{2}+10x-379=0
Tangohia te 385 i te 6, ka -379.
x=\frac{-10±\sqrt{10^{2}-4\times 4\left(-379\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 10 mō b, me -379 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 4\left(-379\right)}}{2\times 4}
Pūrua 10.
x=\frac{-10±\sqrt{100-16\left(-379\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-10±\sqrt{100+6064}}{2\times 4}
Whakareatia -16 ki te -379.
x=\frac{-10±\sqrt{6164}}{2\times 4}
Tāpiri 100 ki te 6064.
x=\frac{-10±2\sqrt{1541}}{2\times 4}
Tuhia te pūtakerua o te 6164.
x=\frac{-10±2\sqrt{1541}}{8}
Whakareatia 2 ki te 4.
x=\frac{2\sqrt{1541}-10}{8}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{1541}}{8} ina he tāpiri te ±. Tāpiri -10 ki te 2\sqrt{1541}.
x=\frac{\sqrt{1541}-5}{4}
Whakawehe -10+2\sqrt{1541} ki te 8.
x=\frac{-2\sqrt{1541}-10}{8}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{1541}}{8} ina he tango te ±. Tango 2\sqrt{1541} mai i -10.
x=\frac{-\sqrt{1541}-5}{4}
Whakawehe -10-2\sqrt{1541} ki te 8.
x=\frac{\sqrt{1541}-5}{4} x=\frac{-\sqrt{1541}-5}{4}
Kua oti te whārite te whakatau.
385=4x^{2}+10x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+2 ki te 2x+3 ka whakakotahi i ngā kupu rite.
4x^{2}+10x+6=385
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x^{2}+10x=385-6
Tangohia te 6 mai i ngā taha e rua.
4x^{2}+10x=379
Tangohia te 6 i te 385, ka 379.
\frac{4x^{2}+10x}{4}=\frac{379}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{10}{4}x=\frac{379}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{5}{2}x=\frac{379}{4}
Whakahekea te hautanga \frac{10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{379}{4}+\left(\frac{5}{4}\right)^{2}
Whakawehea te \frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{4}. Nā, tāpiria te pūrua o te \frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{379}{4}+\frac{25}{16}
Pūruatia \frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{1541}{16}
Tāpiri \frac{379}{4} ki te \frac{25}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{4}\right)^{2}=\frac{1541}{16}
Tauwehea x^{2}+\frac{5}{2}x+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{1541}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{4}=\frac{\sqrt{1541}}{4} x+\frac{5}{4}=-\frac{\sqrt{1541}}{4}
Whakarūnātia.
x=\frac{\sqrt{1541}-5}{4} x=\frac{-\sqrt{1541}-5}{4}
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.