Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

38t^{2}-3403t+65590=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-\left(-3403\right)±\sqrt{\left(-3403\right)^{2}-4\times 38\times 65590}}{2\times 38}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-3403\right)±\sqrt{11580409-4\times 38\times 65590}}{2\times 38}
Pūrua -3403.
t=\frac{-\left(-3403\right)±\sqrt{11580409-152\times 65590}}{2\times 38}
Whakareatia -4 ki te 38.
t=\frac{-\left(-3403\right)±\sqrt{11580409-9969680}}{2\times 38}
Whakareatia -152 ki te 65590.
t=\frac{-\left(-3403\right)±\sqrt{1610729}}{2\times 38}
Tāpiri 11580409 ki te -9969680.
t=\frac{3403±\sqrt{1610729}}{2\times 38}
Ko te tauaro o -3403 ko 3403.
t=\frac{3403±\sqrt{1610729}}{76}
Whakareatia 2 ki te 38.
t=\frac{\sqrt{1610729}+3403}{76}
Nā, me whakaoti te whārite t=\frac{3403±\sqrt{1610729}}{76} ina he tāpiri te ±. Tāpiri 3403 ki te \sqrt{1610729}.
t=\frac{3403-\sqrt{1610729}}{76}
Nā, me whakaoti te whārite t=\frac{3403±\sqrt{1610729}}{76} ina he tango te ±. Tango \sqrt{1610729} mai i 3403.
38t^{2}-3403t+65590=38\left(t-\frac{\sqrt{1610729}+3403}{76}\right)\left(t-\frac{3403-\sqrt{1610729}}{76}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3403+\sqrt{1610729}}{76} mō te x_{1} me te \frac{3403-\sqrt{1610729}}{76} mō te x_{2}.