Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

377=x^{2}
Whakareatia te x ki te x, ka x^{2}.
x^{2}=377
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\sqrt{377} x=-\sqrt{377}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
377=x^{2}
Whakareatia te x ki te x, ka x^{2}.
x^{2}=377
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-377=0
Tangohia te 377 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-377\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -377 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-377\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{1508}}{2}
Whakareatia -4 ki te -377.
x=\frac{0±2\sqrt{377}}{2}
Tuhia te pūtakerua o te 1508.
x=\sqrt{377}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{377}}{2} ina he tāpiri te ±.
x=-\sqrt{377}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{377}}{2} ina he tango te ±.
x=\sqrt{377} x=-\sqrt{377}
Kua oti te whārite te whakatau.