Aromātai
376.625
Tauwehe
\frac{23 \cdot 131}{2 ^ {3}} = 376\frac{5}{8} = 376.625
Tohaina
Kua tāruatia ki te papatopenga
375+\frac{45+1}{5}-\frac{3\times 8+3}{8}-4.2
Whakareatia te 9 ki te 5, ka 45.
375+\frac{46}{5}-\frac{3\times 8+3}{8}-4.2
Tāpirihia te 45 ki te 1, ka 46.
\frac{1875}{5}+\frac{46}{5}-\frac{3\times 8+3}{8}-4.2
Me tahuri te 375 ki te hautau \frac{1875}{5}.
\frac{1875+46}{5}-\frac{3\times 8+3}{8}-4.2
Tā te mea he rite te tauraro o \frac{1875}{5} me \frac{46}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1921}{5}-\frac{3\times 8+3}{8}-4.2
Tāpirihia te 1875 ki te 46, ka 1921.
\frac{1921}{5}-\frac{24+3}{8}-4.2
Whakareatia te 3 ki te 8, ka 24.
\frac{1921}{5}-\frac{27}{8}-4.2
Tāpirihia te 24 ki te 3, ka 27.
\frac{15368}{40}-\frac{135}{40}-4.2
Ko te maha noa iti rawa atu o 5 me 8 ko 40. Me tahuri \frac{1921}{5} me \frac{27}{8} ki te hautau me te tautūnga 40.
\frac{15368-135}{40}-4.2
Tā te mea he rite te tauraro o \frac{15368}{40} me \frac{135}{40}, me tango rāua mā te tango i ō raua taurunga.
\frac{15233}{40}-4.2
Tangohia te 135 i te 15368, ka 15233.
\frac{15233}{40}-\frac{21}{5}
Me tahuri ki tau ā-ira 4.2 ki te hautau \frac{42}{10}. Whakahekea te hautanga \frac{42}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{15233}{40}-\frac{168}{40}
Ko te maha noa iti rawa atu o 40 me 5 ko 40. Me tahuri \frac{15233}{40} me \frac{21}{5} ki te hautau me te tautūnga 40.
\frac{15233-168}{40}
Tā te mea he rite te tauraro o \frac{15233}{40} me \frac{168}{40}, me tango rāua mā te tango i ō raua taurunga.
\frac{15065}{40}
Tangohia te 168 i te 15233, ka 15065.
\frac{3013}{8}
Whakahekea te hautanga \frac{15065}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}