Whakaoti mō x
x = \frac{10 \sqrt{3} + 35}{37} \approx 1.414067786
x=\frac{35-10\sqrt{3}}{37}\approx 0.477824106
Graph
Tohaina
Kua tāruatia ki te papatopenga
37x^{2}-70x+25=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\times 37\times 25}}{2\times 37}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 37 mō a, -70 mō b, me 25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-70\right)±\sqrt{4900-4\times 37\times 25}}{2\times 37}
Pūrua -70.
x=\frac{-\left(-70\right)±\sqrt{4900-148\times 25}}{2\times 37}
Whakareatia -4 ki te 37.
x=\frac{-\left(-70\right)±\sqrt{4900-3700}}{2\times 37}
Whakareatia -148 ki te 25.
x=\frac{-\left(-70\right)±\sqrt{1200}}{2\times 37}
Tāpiri 4900 ki te -3700.
x=\frac{-\left(-70\right)±20\sqrt{3}}{2\times 37}
Tuhia te pūtakerua o te 1200.
x=\frac{70±20\sqrt{3}}{2\times 37}
Ko te tauaro o -70 ko 70.
x=\frac{70±20\sqrt{3}}{74}
Whakareatia 2 ki te 37.
x=\frac{20\sqrt{3}+70}{74}
Nā, me whakaoti te whārite x=\frac{70±20\sqrt{3}}{74} ina he tāpiri te ±. Tāpiri 70 ki te 20\sqrt{3}.
x=\frac{10\sqrt{3}+35}{37}
Whakawehe 70+20\sqrt{3} ki te 74.
x=\frac{70-20\sqrt{3}}{74}
Nā, me whakaoti te whārite x=\frac{70±20\sqrt{3}}{74} ina he tango te ±. Tango 20\sqrt{3} mai i 70.
x=\frac{35-10\sqrt{3}}{37}
Whakawehe 70-20\sqrt{3} ki te 74.
x=\frac{10\sqrt{3}+35}{37} x=\frac{35-10\sqrt{3}}{37}
Kua oti te whārite te whakatau.
37x^{2}-70x+25=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
37x^{2}-70x+25-25=-25
Me tango 25 mai i ngā taha e rua o te whārite.
37x^{2}-70x=-25
Mā te tango i te 25 i a ia ake anō ka toe ko te 0.
\frac{37x^{2}-70x}{37}=-\frac{25}{37}
Whakawehea ngā taha e rua ki te 37.
x^{2}-\frac{70}{37}x=-\frac{25}{37}
Mā te whakawehe ki te 37 ka wetekia te whakareanga ki te 37.
x^{2}-\frac{70}{37}x+\left(-\frac{35}{37}\right)^{2}=-\frac{25}{37}+\left(-\frac{35}{37}\right)^{2}
Whakawehea te -\frac{70}{37}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{35}{37}. Nā, tāpiria te pūrua o te -\frac{35}{37} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{70}{37}x+\frac{1225}{1369}=-\frac{25}{37}+\frac{1225}{1369}
Pūruatia -\frac{35}{37} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{70}{37}x+\frac{1225}{1369}=\frac{300}{1369}
Tāpiri -\frac{25}{37} ki te \frac{1225}{1369} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{35}{37}\right)^{2}=\frac{300}{1369}
Tauwehea x^{2}-\frac{70}{37}x+\frac{1225}{1369}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{37}\right)^{2}}=\sqrt{\frac{300}{1369}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{35}{37}=\frac{10\sqrt{3}}{37} x-\frac{35}{37}=-\frac{10\sqrt{3}}{37}
Whakarūnātia.
x=\frac{10\sqrt{3}+35}{37} x=\frac{35-10\sqrt{3}}{37}
Me tāpiri \frac{35}{37} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}