Whakaoti mō x (complex solution)
x=\frac{7317+\sqrt{479361511}i}{730}\approx 10.023287671+29.992227397i
x=\frac{-\sqrt{479361511}i+7317}{730}\approx 10.023287671-29.992227397i
Graph
Tohaina
Kua tāruatia ki te papatopenga
365x^{2}-7317x+365000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7317\right)±\sqrt{\left(-7317\right)^{2}-4\times 365\times 365000}}{2\times 365}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 365 mō a, -7317 mō b, me 365000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7317\right)±\sqrt{53538489-4\times 365\times 365000}}{2\times 365}
Pūrua -7317.
x=\frac{-\left(-7317\right)±\sqrt{53538489-1460\times 365000}}{2\times 365}
Whakareatia -4 ki te 365.
x=\frac{-\left(-7317\right)±\sqrt{53538489-532900000}}{2\times 365}
Whakareatia -1460 ki te 365000.
x=\frac{-\left(-7317\right)±\sqrt{-479361511}}{2\times 365}
Tāpiri 53538489 ki te -532900000.
x=\frac{-\left(-7317\right)±\sqrt{479361511}i}{2\times 365}
Tuhia te pūtakerua o te -479361511.
x=\frac{7317±\sqrt{479361511}i}{2\times 365}
Ko te tauaro o -7317 ko 7317.
x=\frac{7317±\sqrt{479361511}i}{730}
Whakareatia 2 ki te 365.
x=\frac{7317+\sqrt{479361511}i}{730}
Nā, me whakaoti te whārite x=\frac{7317±\sqrt{479361511}i}{730} ina he tāpiri te ±. Tāpiri 7317 ki te i\sqrt{479361511}.
x=\frac{-\sqrt{479361511}i+7317}{730}
Nā, me whakaoti te whārite x=\frac{7317±\sqrt{479361511}i}{730} ina he tango te ±. Tango i\sqrt{479361511} mai i 7317.
x=\frac{7317+\sqrt{479361511}i}{730} x=\frac{-\sqrt{479361511}i+7317}{730}
Kua oti te whārite te whakatau.
365x^{2}-7317x+365000=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
365x^{2}-7317x+365000-365000=-365000
Me tango 365000 mai i ngā taha e rua o te whārite.
365x^{2}-7317x=-365000
Mā te tango i te 365000 i a ia ake anō ka toe ko te 0.
\frac{365x^{2}-7317x}{365}=-\frac{365000}{365}
Whakawehea ngā taha e rua ki te 365.
x^{2}-\frac{7317}{365}x=-\frac{365000}{365}
Mā te whakawehe ki te 365 ka wetekia te whakareanga ki te 365.
x^{2}-\frac{7317}{365}x=-1000
Whakawehe -365000 ki te 365.
x^{2}-\frac{7317}{365}x+\left(-\frac{7317}{730}\right)^{2}=-1000+\left(-\frac{7317}{730}\right)^{2}
Whakawehea te -\frac{7317}{365}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7317}{730}. Nā, tāpiria te pūrua o te -\frac{7317}{730} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7317}{365}x+\frac{53538489}{532900}=-1000+\frac{53538489}{532900}
Pūruatia -\frac{7317}{730} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7317}{365}x+\frac{53538489}{532900}=-\frac{479361511}{532900}
Tāpiri -1000 ki te \frac{53538489}{532900}.
\left(x-\frac{7317}{730}\right)^{2}=-\frac{479361511}{532900}
Tauwehea x^{2}-\frac{7317}{365}x+\frac{53538489}{532900}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7317}{730}\right)^{2}}=\sqrt{-\frac{479361511}{532900}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7317}{730}=\frac{\sqrt{479361511}i}{730} x-\frac{7317}{730}=-\frac{\sqrt{479361511}i}{730}
Whakarūnātia.
x=\frac{7317+\sqrt{479361511}i}{730} x=\frac{-\sqrt{479361511}i+7317}{730}
Me tāpiri \frac{7317}{730} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}