Whakaoti mō m (complex solution)
\left\{\begin{matrix}m=0\text{, }&h\neq 0\\m\in \mathrm{C}\text{, }&h=\frac{3602}{x}\text{ and }x\neq 0\end{matrix}\right.
Whakaoti mō h
\left\{\begin{matrix}h=\frac{3602}{x}\text{, }&x\neq 0\\h\neq 0\text{, }&m=0\end{matrix}\right.
Whakaoti mō m
\left\{\begin{matrix}m=0\text{, }&h\neq 0\\m\in \mathrm{R}\text{, }&h=\frac{3602}{x}\text{ and }x\neq 0\end{matrix}\right.
Graph
Pātaitai
Linear Equation
3602 m / h = x m
Tohaina
Kua tāruatia ki te papatopenga
3602m=xmh
Whakareatia ngā taha e rua o te whārite ki te h.
3602m-xmh=0
Tangohia te xmh mai i ngā taha e rua.
-hmx+3602m=0
Whakaraupapatia anō ngā kīanga tau.
\left(-hx+3602\right)m=0
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(3602-hx\right)m=0
He hanga arowhānui tō te whārite.
m=0
Whakawehe 0 ki te 3602-hx.
3602m=xmh
Tē taea kia ōrite te tāupe h ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te h.
xmh=3602m
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
mxh=3602m
He hanga arowhānui tō te whārite.
\frac{mxh}{mx}=\frac{3602m}{mx}
Whakawehea ngā taha e rua ki te xm.
h=\frac{3602m}{mx}
Mā te whakawehe ki te xm ka wetekia te whakareanga ki te xm.
h=\frac{3602}{x}
Whakawehe 3602m ki te xm.
h=\frac{3602}{x}\text{, }h\neq 0
Tē taea kia ōrite te tāupe h ki 0.
3602m=xmh
Whakareatia ngā taha e rua o te whārite ki te h.
3602m-xmh=0
Tangohia te xmh mai i ngā taha e rua.
-hmx+3602m=0
Whakaraupapatia anō ngā kīanga tau.
\left(-hx+3602\right)m=0
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(3602-hx\right)m=0
He hanga arowhānui tō te whārite.
m=0
Whakawehe 0 ki te 3602-hx.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}