Whakaoti mō y
y=\frac{\sqrt{3}}{18}+\frac{1}{6}\approx 0.262891712
y=-\frac{\sqrt{3}}{18}+\frac{1}{6}\approx 0.070441622
Graph
Tohaina
Kua tāruatia ki te papatopenga
36y\left(-27\right)y=-27y\times 12+18
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -27y.
-972yy=-27y\times 12+18
Whakareatia te 36 ki te -27, ka -972.
-972y^{2}=-27y\times 12+18
Whakareatia te y ki te y, ka y^{2}.
-972y^{2}=-324y+18
Whakareatia te -27 ki te 12, ka -324.
-972y^{2}+324y=18
Me tāpiri te 324y ki ngā taha e rua.
-972y^{2}+324y-18=0
Tangohia te 18 mai i ngā taha e rua.
y=\frac{-324±\sqrt{324^{2}-4\left(-972\right)\left(-18\right)}}{2\left(-972\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -972 mō a, 324 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-324±\sqrt{104976-4\left(-972\right)\left(-18\right)}}{2\left(-972\right)}
Pūrua 324.
y=\frac{-324±\sqrt{104976+3888\left(-18\right)}}{2\left(-972\right)}
Whakareatia -4 ki te -972.
y=\frac{-324±\sqrt{104976-69984}}{2\left(-972\right)}
Whakareatia 3888 ki te -18.
y=\frac{-324±\sqrt{34992}}{2\left(-972\right)}
Tāpiri 104976 ki te -69984.
y=\frac{-324±108\sqrt{3}}{2\left(-972\right)}
Tuhia te pūtakerua o te 34992.
y=\frac{-324±108\sqrt{3}}{-1944}
Whakareatia 2 ki te -972.
y=\frac{108\sqrt{3}-324}{-1944}
Nā, me whakaoti te whārite y=\frac{-324±108\sqrt{3}}{-1944} ina he tāpiri te ±. Tāpiri -324 ki te 108\sqrt{3}.
y=-\frac{\sqrt{3}}{18}+\frac{1}{6}
Whakawehe -324+108\sqrt{3} ki te -1944.
y=\frac{-108\sqrt{3}-324}{-1944}
Nā, me whakaoti te whārite y=\frac{-324±108\sqrt{3}}{-1944} ina he tango te ±. Tango 108\sqrt{3} mai i -324.
y=\frac{\sqrt{3}}{18}+\frac{1}{6}
Whakawehe -324-108\sqrt{3} ki te -1944.
y=-\frac{\sqrt{3}}{18}+\frac{1}{6} y=\frac{\sqrt{3}}{18}+\frac{1}{6}
Kua oti te whārite te whakatau.
36y\left(-27\right)y=-27y\times 12+18
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -27y.
-972yy=-27y\times 12+18
Whakareatia te 36 ki te -27, ka -972.
-972y^{2}=-27y\times 12+18
Whakareatia te y ki te y, ka y^{2}.
-972y^{2}=-324y+18
Whakareatia te -27 ki te 12, ka -324.
-972y^{2}+324y=18
Me tāpiri te 324y ki ngā taha e rua.
\frac{-972y^{2}+324y}{-972}=\frac{18}{-972}
Whakawehea ngā taha e rua ki te -972.
y^{2}+\frac{324}{-972}y=\frac{18}{-972}
Mā te whakawehe ki te -972 ka wetekia te whakareanga ki te -972.
y^{2}-\frac{1}{3}y=\frac{18}{-972}
Whakahekea te hautanga \frac{324}{-972} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 324.
y^{2}-\frac{1}{3}y=-\frac{1}{54}
Whakahekea te hautanga \frac{18}{-972} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
y^{2}-\frac{1}{3}y+\left(-\frac{1}{6}\right)^{2}=-\frac{1}{54}+\left(-\frac{1}{6}\right)^{2}
Whakawehea te -\frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{6}. Nā, tāpiria te pūrua o te -\frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{1}{3}y+\frac{1}{36}=-\frac{1}{54}+\frac{1}{36}
Pūruatia -\frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{1}{3}y+\frac{1}{36}=\frac{1}{108}
Tāpiri -\frac{1}{54} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y-\frac{1}{6}\right)^{2}=\frac{1}{108}
Tauwehea y^{2}-\frac{1}{3}y+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{108}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{1}{6}=\frac{\sqrt{3}}{18} y-\frac{1}{6}=-\frac{\sqrt{3}}{18}
Whakarūnātia.
y=\frac{\sqrt{3}}{18}+\frac{1}{6} y=-\frac{\sqrt{3}}{18}+\frac{1}{6}
Me tāpiri \frac{1}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}