Whakaoti mō t
t=-\frac{\sqrt{5}}{6}\approx -0.372677996
t=\frac{\sqrt{5}}{6}\approx 0.372677996
Tohaina
Kua tāruatia ki te papatopenga
36t^{2}+31t-5=0
Whakakapia te t mō te t^{2}.
t=\frac{-31±\sqrt{31^{2}-4\times 36\left(-5\right)}}{2\times 36}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 36 mō te a, te 31 mō te b, me te -5 mō te c i te ture pūrua.
t=\frac{-31±41}{72}
Mahia ngā tātaitai.
t=\frac{5}{36} t=-1
Whakaotia te whārite t=\frac{-31±41}{72} ina he tōrunga te ±, ina he tōraro te ±.
t=\frac{\sqrt{5}}{6} t=-\frac{\sqrt{5}}{6}
I te mea ko t=t^{2}, ka riro ngā otinga mā te arotake i te t=±\sqrt{t} mō t tōrunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}