Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

36t^{2}+31t-5=0
Whakakapia te t mō te t^{2}.
t=\frac{-31±\sqrt{31^{2}-4\times 36\left(-5\right)}}{2\times 36}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 36 mō te a, te 31 mō te b, me te -5 mō te c i te ture pūrua.
t=\frac{-31±41}{72}
Mahia ngā tātaitai.
t=\frac{5}{36} t=-1
Whakaotia te whārite t=\frac{-31±41}{72} ina he tōrunga te ±, ina he tōraro te ±.
t=\frac{\sqrt{5}}{6} t=-\frac{\sqrt{5}}{6}
I te mea ko t=t^{2}, ka riro ngā otinga mā te arotake i te t=±\sqrt{t} mō t tōrunga.