Whakaoti mō m
m=-3
m=\frac{3}{4}=0.75
Tohaina
Kua tāruatia ki te papatopenga
36m=18m+18-8m^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 6-2m ki te 4m+3 ka whakakotahi i ngā kupu rite.
36m-18m=18-8m^{2}
Tangohia te 18m mai i ngā taha e rua.
18m=18-8m^{2}
Pahekotia te 36m me -18m, ka 18m.
18m-18=-8m^{2}
Tangohia te 18 mai i ngā taha e rua.
18m-18+8m^{2}=0
Me tāpiri te 8m^{2} ki ngā taha e rua.
8m^{2}+18m-18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-18±\sqrt{18^{2}-4\times 8\left(-18\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, 18 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-18±\sqrt{324-4\times 8\left(-18\right)}}{2\times 8}
Pūrua 18.
m=\frac{-18±\sqrt{324-32\left(-18\right)}}{2\times 8}
Whakareatia -4 ki te 8.
m=\frac{-18±\sqrt{324+576}}{2\times 8}
Whakareatia -32 ki te -18.
m=\frac{-18±\sqrt{900}}{2\times 8}
Tāpiri 324 ki te 576.
m=\frac{-18±30}{2\times 8}
Tuhia te pūtakerua o te 900.
m=\frac{-18±30}{16}
Whakareatia 2 ki te 8.
m=\frac{12}{16}
Nā, me whakaoti te whārite m=\frac{-18±30}{16} ina he tāpiri te ±. Tāpiri -18 ki te 30.
m=\frac{3}{4}
Whakahekea te hautanga \frac{12}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
m=-\frac{48}{16}
Nā, me whakaoti te whārite m=\frac{-18±30}{16} ina he tango te ±. Tango 30 mai i -18.
m=-3
Whakawehe -48 ki te 16.
m=\frac{3}{4} m=-3
Kua oti te whārite te whakatau.
36m=18m+18-8m^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 6-2m ki te 4m+3 ka whakakotahi i ngā kupu rite.
36m-18m=18-8m^{2}
Tangohia te 18m mai i ngā taha e rua.
18m=18-8m^{2}
Pahekotia te 36m me -18m, ka 18m.
18m+8m^{2}=18
Me tāpiri te 8m^{2} ki ngā taha e rua.
8m^{2}+18m=18
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{8m^{2}+18m}{8}=\frac{18}{8}
Whakawehea ngā taha e rua ki te 8.
m^{2}+\frac{18}{8}m=\frac{18}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
m^{2}+\frac{9}{4}m=\frac{18}{8}
Whakahekea te hautanga \frac{18}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
m^{2}+\frac{9}{4}m=\frac{9}{4}
Whakahekea te hautanga \frac{18}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
m^{2}+\frac{9}{4}m+\left(\frac{9}{8}\right)^{2}=\frac{9}{4}+\left(\frac{9}{8}\right)^{2}
Whakawehea te \frac{9}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{8}. Nā, tāpiria te pūrua o te \frac{9}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}+\frac{9}{4}m+\frac{81}{64}=\frac{9}{4}+\frac{81}{64}
Pūruatia \frac{9}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}+\frac{9}{4}m+\frac{81}{64}=\frac{225}{64}
Tāpiri \frac{9}{4} ki te \frac{81}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(m+\frac{9}{8}\right)^{2}=\frac{225}{64}
Tauwehea m^{2}+\frac{9}{4}m+\frac{81}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{9}{8}\right)^{2}}=\sqrt{\frac{225}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m+\frac{9}{8}=\frac{15}{8} m+\frac{9}{8}=-\frac{15}{8}
Whakarūnātia.
m=\frac{3}{4} m=-3
Me tango \frac{9}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}