Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

36-20\left(a^{2}+1\right)\geq 0
Whakareatia te 4 ki te 5, ka 20.
36-20a^{2}-20\geq 0
Whakamahia te āhuatanga tohatoha hei whakarea te -20 ki te a^{2}+1.
16-20a^{2}\geq 0
Tangohia te 20 i te 36, ka 16.
-16+20a^{2}\leq 0
Me whakarea te koreōrite ki te -1 kia tōrunga ai te tau whakarea o te pū tino teitei i 16-20a^{2}. I te mea he tōraro a -1, ka huri te ahunga koreōrite.
a^{2}\leq \frac{4}{5}
Me tāpiri te \frac{4}{5} ki ngā taha e rua.
a^{2}\leq \left(\frac{2\sqrt{5}}{5}\right)^{2}
Tātaitia te pūtakerua o \frac{4}{5} kia tae ki \frac{2\sqrt{5}}{5}. Tuhia anō te \frac{4}{5} hei \left(\frac{2\sqrt{5}}{5}\right)^{2}.
|a|\leq \frac{2\sqrt{5}}{5}
E mau ana te koreōrite mō |a|\leq \frac{2\sqrt{5}}{5}.
a\in \begin{bmatrix}-\frac{2\sqrt{5}}{5},\frac{2\sqrt{5}}{5}\end{bmatrix}
Tuhia anō te |a|\leq \frac{2\sqrt{5}}{5} hei a\in \left[-\frac{2\sqrt{5}}{5},\frac{2\sqrt{5}}{5}\right].