Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

36y^{2}=-40
Tangohia te 40 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}=\frac{-40}{36}
Whakawehea ngā taha e rua ki te 36.
y^{2}=-\frac{10}{9}
Whakahekea te hautanga \frac{-40}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
y=\frac{\sqrt{10}i}{3} y=-\frac{\sqrt{10}i}{3}
Kua oti te whārite te whakatau.
36y^{2}+40=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 36\times 40}}{2\times 36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 36 mō a, 0 mō b, me 40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 36\times 40}}{2\times 36}
Pūrua 0.
y=\frac{0±\sqrt{-144\times 40}}{2\times 36}
Whakareatia -4 ki te 36.
y=\frac{0±\sqrt{-5760}}{2\times 36}
Whakareatia -144 ki te 40.
y=\frac{0±24\sqrt{10}i}{2\times 36}
Tuhia te pūtakerua o te -5760.
y=\frac{0±24\sqrt{10}i}{72}
Whakareatia 2 ki te 36.
y=\frac{\sqrt{10}i}{3}
Nā, me whakaoti te whārite y=\frac{0±24\sqrt{10}i}{72} ina he tāpiri te ±.
y=-\frac{\sqrt{10}i}{3}
Nā, me whakaoti te whārite y=\frac{0±24\sqrt{10}i}{72} ina he tango te ±.
y=\frac{\sqrt{10}i}{3} y=-\frac{\sqrt{10}i}{3}
Kua oti te whārite te whakatau.