Whakaoti mō y
y=-\frac{\sqrt{10}i}{3}\approx -0-1.054092553i
y=\frac{\sqrt{10}i}{3}\approx 1.054092553i
Tohaina
Kua tāruatia ki te papatopenga
36y^{2}=-40
Tangohia te 40 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}=\frac{-40}{36}
Whakawehea ngā taha e rua ki te 36.
y^{2}=-\frac{10}{9}
Whakahekea te hautanga \frac{-40}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
y=\frac{\sqrt{10}i}{3} y=-\frac{\sqrt{10}i}{3}
Kua oti te whārite te whakatau.
36y^{2}+40=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 36\times 40}}{2\times 36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 36 mō a, 0 mō b, me 40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 36\times 40}}{2\times 36}
Pūrua 0.
y=\frac{0±\sqrt{-144\times 40}}{2\times 36}
Whakareatia -4 ki te 36.
y=\frac{0±\sqrt{-5760}}{2\times 36}
Whakareatia -144 ki te 40.
y=\frac{0±24\sqrt{10}i}{2\times 36}
Tuhia te pūtakerua o te -5760.
y=\frac{0±24\sqrt{10}i}{72}
Whakareatia 2 ki te 36.
y=\frac{\sqrt{10}i}{3}
Nā, me whakaoti te whārite y=\frac{0±24\sqrt{10}i}{72} ina he tāpiri te ±.
y=-\frac{\sqrt{10}i}{3}
Nā, me whakaoti te whārite y=\frac{0±24\sqrt{10}i}{72} ina he tango te ±.
y=\frac{\sqrt{10}i}{3} y=-\frac{\sqrt{10}i}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}