Tauwehe
\left(2a-3b\right)\left(3a-2b\right)\left(2a+3b\right)\left(3a+2b\right)
Aromātai
36a^{4}+36b^{4}-97\left(ab\right)^{2}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
36 { a }^{ 4 } -97 { a }^{ 2 } { b }^{ 2 } +36 { b }^{ 4 }
Tohaina
Kua tāruatia ki te papatopenga
36a^{4}-97b^{2}a^{2}+36b^{4}
Whakaarohia te 36a^{4}-97a^{2}b^{2}+36b^{4} hei pūrau ki runga i te taurangi a.
\left(4a^{2}-9b^{2}\right)\left(9a^{2}-4b^{2}\right)
Kimihia he tauwehe o te āhua ka^{m}+n, e wehea ai e ka^{m} te huatahi me te pū nui rawa 36a^{4}, e wehea hoki e n te tauwehe pūmau 36b^{4}. Ko tētahi tauwehe pērā ko 4a^{2}-9b^{2}. Whakatauwehea te pūrau mā te whakawehe ki tēnei tauwehe.
\left(2a-3b\right)\left(2a+3b\right)
Whakaarohia te 4a^{2}-9b^{2}. Tuhia anō te 4a^{2}-9b^{2} hei \left(2a\right)^{2}-\left(3b\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(3a-2b\right)\left(3a+2b\right)
Whakaarohia te 9a^{2}-4b^{2}. Tuhia anō te 9a^{2}-4b^{2} hei \left(3a\right)^{2}-\left(2b\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(2a-3b\right)\left(2a+3b\right)\left(3a-2b\right)\left(3a+2b\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}