Aromātai
\frac{4}{3}\approx 1.333333333
Tauwehe
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{36\times \frac{1}{3}\times \frac{1}{9}\times 2}{\frac{2}{3}\left(1\times 2+1\right)}
Whakawehe \frac{36\times \frac{1}{3}\times \frac{1}{9}}{\frac{2}{3}} ki te \frac{1\times 2+1}{2} mā te whakarea \frac{36\times \frac{1}{3}\times \frac{1}{9}}{\frac{2}{3}} ki te tau huripoki o \frac{1\times 2+1}{2}.
\frac{\frac{36}{3}\times \frac{1}{9}\times 2}{\frac{2}{3}\left(1\times 2+1\right)}
Whakareatia te 36 ki te \frac{1}{3}, ka \frac{36}{3}.
\frac{12\times \frac{1}{9}\times 2}{\frac{2}{3}\left(1\times 2+1\right)}
Whakawehea te 36 ki te 3, kia riro ko 12.
\frac{\frac{12}{9}\times 2}{\frac{2}{3}\left(1\times 2+1\right)}
Whakareatia te 12 ki te \frac{1}{9}, ka \frac{12}{9}.
\frac{\frac{4}{3}\times 2}{\frac{2}{3}\left(1\times 2+1\right)}
Whakahekea te hautanga \frac{12}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\frac{4\times 2}{3}}{\frac{2}{3}\left(1\times 2+1\right)}
Tuhia te \frac{4}{3}\times 2 hei hautanga kotahi.
\frac{\frac{8}{3}}{\frac{2}{3}\left(1\times 2+1\right)}
Whakareatia te 4 ki te 2, ka 8.
\frac{\frac{8}{3}}{\frac{2}{3}\left(2+1\right)}
Whakareatia te 1 ki te 2, ka 2.
\frac{\frac{8}{3}}{\frac{2}{3}\times 3}
Tāpirihia te 2 ki te 1, ka 3.
\frac{\frac{8}{3}}{2}
Me whakakore te 3 me te 3.
\frac{8}{3\times 2}
Tuhia te \frac{\frac{8}{3}}{2} hei hautanga kotahi.
\frac{8}{6}
Whakareatia te 3 ki te 2, ka 6.
\frac{4}{3}
Whakahekea te hautanga \frac{8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}