Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(36\times 6+3\right)\times 2}{6\left(36\times 2+1\right)}
Whakawehe \frac{36\times 6+3}{6} ki te \frac{36\times 2+1}{2} mā te whakarea \frac{36\times 6+3}{6} ki te tau huripoki o \frac{36\times 2+1}{2}.
\frac{3+6\times 36}{3\left(1+2\times 36\right)}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3+216}{3\left(1+2\times 36\right)}
Whakareatia te 6 ki te 36, ka 216.
\frac{219}{3\left(1+2\times 36\right)}
Tāpirihia te 3 ki te 216, ka 219.
\frac{219}{3\left(1+72\right)}
Whakareatia te 2 ki te 36, ka 72.
\frac{219}{3\times 73}
Tāpirihia te 1 ki te 72, ka 73.
\frac{219}{219}
Whakareatia te 3 ki te 73, ka 219.
1
Whakawehea te 219 ki te 219, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}