Whakaoti mō A
\left\{\begin{matrix}A=-\frac{V}{4\Omega n^{2}}\text{, }&V\neq 0\text{ and }n\neq 0\text{ and }\Omega \neq 0\\A\neq 0\text{, }&\Omega =0\text{ and }V=0\text{ and }n\neq 0\end{matrix}\right.
Whakaoti mō V
V=-4A\Omega n^{2}
A\neq 0\text{ and }n\neq 0
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
36 \Omega = \frac { 5 V - 32 V } { n \times 3 n A }
Tohaina
Kua tāruatia ki te papatopenga
36\Omega \times 3An^{2}=5V-32V
Tē taea kia ōrite te tāupe A ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3An^{2}.
108\Omega An^{2}=5V-32V
Whakareatia te 36 ki te 3, ka 108.
108\Omega An^{2}=-27V
Pahekotia te 5V me -32V, ka -27V.
108\Omega n^{2}A=-27V
He hanga arowhānui tō te whārite.
\frac{108\Omega n^{2}A}{108\Omega n^{2}}=-\frac{27V}{108\Omega n^{2}}
Whakawehea ngā taha e rua ki te 108\Omega n^{2}.
A=-\frac{27V}{108\Omega n^{2}}
Mā te whakawehe ki te 108\Omega n^{2} ka wetekia te whakareanga ki te 108\Omega n^{2}.
A=-\frac{V}{4\Omega n^{2}}
Whakawehe -27V ki te 108\Omega n^{2}.
A=-\frac{V}{4\Omega n^{2}}\text{, }A\neq 0
Tē taea kia ōrite te tāupe A ki 0.
36\Omega \times 3An^{2}=5V-32V
Whakareatia ngā taha e rua o te whārite ki te 3An^{2}.
108\Omega An^{2}=5V-32V
Whakareatia te 36 ki te 3, ka 108.
108\Omega An^{2}=-27V
Pahekotia te 5V me -32V, ka -27V.
-27V=108\Omega An^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-27V=108A\Omega n^{2}
He hanga arowhānui tō te whārite.
\frac{-27V}{-27}=\frac{108A\Omega n^{2}}{-27}
Whakawehea ngā taha e rua ki te -27.
V=\frac{108A\Omega n^{2}}{-27}
Mā te whakawehe ki te -27 ka wetekia te whakareanga ki te -27.
V=-4A\Omega n^{2}
Whakawehe 108\Omega An^{2} ki te -27.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}