Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{36^{4}}{2^{8}}=\frac{36^{4}}{2^{4}}\text{ and }\frac{36^{4}}{2^{4}}=9^{4}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 4 kia riro ai te 8.
\frac{1679616}{2^{8}}=\frac{36^{4}}{2^{4}}\text{ and }\frac{36^{4}}{2^{4}}=9^{4}
Tātaihia te 36 mā te pū o 4, kia riro ko 1679616.
\frac{1679616}{256}=\frac{36^{4}}{2^{4}}\text{ and }\frac{36^{4}}{2^{4}}=9^{4}
Tātaihia te 2 mā te pū o 8, kia riro ko 256.
6561=\frac{36^{4}}{2^{4}}\text{ and }\frac{36^{4}}{2^{4}}=9^{4}
Whakawehea te 1679616 ki te 256, kia riro ko 6561.
6561=\frac{1679616}{2^{4}}\text{ and }\frac{36^{4}}{2^{4}}=9^{4}
Tātaihia te 36 mā te pū o 4, kia riro ko 1679616.
6561=\frac{1679616}{16}\text{ and }\frac{36^{4}}{2^{4}}=9^{4}
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
6561=104976\text{ and }\frac{36^{4}}{2^{4}}=9^{4}
Whakawehea te 1679616 ki te 16, kia riro ko 104976.
\text{false}\text{ and }\frac{36^{4}}{2^{4}}=9^{4}
Whakatauritea te 6561 me te 104976.
\text{false}\text{ and }\frac{1679616}{2^{4}}=9^{4}
Tātaihia te 36 mā te pū o 4, kia riro ko 1679616.
\text{false}\text{ and }\frac{1679616}{16}=9^{4}
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
\text{false}\text{ and }104976=9^{4}
Whakawehea te 1679616 ki te 16, kia riro ko 104976.
\text{false}\text{ and }104976=6561
Tātaihia te 9 mā te pū o 4, kia riro ko 6561.
\text{false}\text{ and }\text{false}
Whakatauritea te 104976 me te 6561.
\text{false}
Ko te kōmititanga tōrunga o \text{false} me \text{false} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}