Whakaoti mō x
x=\sqrt{5}+3\approx 5.236067977
x=3-\sqrt{5}\approx 0.763932023
Graph
Tohaina
Kua tāruatia ki te papatopenga
72=3x\left(-6x+36\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
72=-18x^{2}+108x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te -6x+36.
-18x^{2}+108x=72
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-18x^{2}+108x-72=0
Tangohia te 72 mai i ngā taha e rua.
x=\frac{-108±\sqrt{108^{2}-4\left(-18\right)\left(-72\right)}}{2\left(-18\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -18 mō a, 108 mō b, me -72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-108±\sqrt{11664-4\left(-18\right)\left(-72\right)}}{2\left(-18\right)}
Pūrua 108.
x=\frac{-108±\sqrt{11664+72\left(-72\right)}}{2\left(-18\right)}
Whakareatia -4 ki te -18.
x=\frac{-108±\sqrt{11664-5184}}{2\left(-18\right)}
Whakareatia 72 ki te -72.
x=\frac{-108±\sqrt{6480}}{2\left(-18\right)}
Tāpiri 11664 ki te -5184.
x=\frac{-108±36\sqrt{5}}{2\left(-18\right)}
Tuhia te pūtakerua o te 6480.
x=\frac{-108±36\sqrt{5}}{-36}
Whakareatia 2 ki te -18.
x=\frac{36\sqrt{5}-108}{-36}
Nā, me whakaoti te whārite x=\frac{-108±36\sqrt{5}}{-36} ina he tāpiri te ±. Tāpiri -108 ki te 36\sqrt{5}.
x=3-\sqrt{5}
Whakawehe -108+36\sqrt{5} ki te -36.
x=\frac{-36\sqrt{5}-108}{-36}
Nā, me whakaoti te whārite x=\frac{-108±36\sqrt{5}}{-36} ina he tango te ±. Tango 36\sqrt{5} mai i -108.
x=\sqrt{5}+3
Whakawehe -108-36\sqrt{5} ki te -36.
x=3-\sqrt{5} x=\sqrt{5}+3
Kua oti te whārite te whakatau.
72=3x\left(-6x+36\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
72=-18x^{2}+108x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te -6x+36.
-18x^{2}+108x=72
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{-18x^{2}+108x}{-18}=\frac{72}{-18}
Whakawehea ngā taha e rua ki te -18.
x^{2}+\frac{108}{-18}x=\frac{72}{-18}
Mā te whakawehe ki te -18 ka wetekia te whakareanga ki te -18.
x^{2}-6x=\frac{72}{-18}
Whakawehe 108 ki te -18.
x^{2}-6x=-4
Whakawehe 72 ki te -18.
x^{2}-6x+\left(-3\right)^{2}=-4+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-4+9
Pūrua -3.
x^{2}-6x+9=5
Tāpiri -4 ki te 9.
\left(x-3\right)^{2}=5
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=\sqrt{5} x-3=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}+3 x=3-\sqrt{5}
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}