Whakaoti mō x
x = \frac{\sqrt{97} - 7}{2} \approx 1.424428901
x=\frac{-\sqrt{97}-7}{2}\approx -8.424428901
Graph
Tohaina
Kua tāruatia ki te papatopenga
36=2x^{2}+14x+12
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+12 ki te x+1 ka whakakotahi i ngā kupu rite.
2x^{2}+14x+12=36
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+14x+12-36=0
Tangohia te 36 mai i ngā taha e rua.
2x^{2}+14x-24=0
Tangohia te 36 i te 12, ka -24.
x=\frac{-14±\sqrt{14^{2}-4\times 2\left(-24\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 14 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 2\left(-24\right)}}{2\times 2}
Pūrua 14.
x=\frac{-14±\sqrt{196-8\left(-24\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-14±\sqrt{196+192}}{2\times 2}
Whakareatia -8 ki te -24.
x=\frac{-14±\sqrt{388}}{2\times 2}
Tāpiri 196 ki te 192.
x=\frac{-14±2\sqrt{97}}{2\times 2}
Tuhia te pūtakerua o te 388.
x=\frac{-14±2\sqrt{97}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{97}-14}{4}
Nā, me whakaoti te whārite x=\frac{-14±2\sqrt{97}}{4} ina he tāpiri te ±. Tāpiri -14 ki te 2\sqrt{97}.
x=\frac{\sqrt{97}-7}{2}
Whakawehe -14+2\sqrt{97} ki te 4.
x=\frac{-2\sqrt{97}-14}{4}
Nā, me whakaoti te whārite x=\frac{-14±2\sqrt{97}}{4} ina he tango te ±. Tango 2\sqrt{97} mai i -14.
x=\frac{-\sqrt{97}-7}{2}
Whakawehe -14-2\sqrt{97} ki te 4.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
Kua oti te whārite te whakatau.
36=2x^{2}+14x+12
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+12 ki te x+1 ka whakakotahi i ngā kupu rite.
2x^{2}+14x+12=36
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+14x=36-12
Tangohia te 12 mai i ngā taha e rua.
2x^{2}+14x=24
Tangohia te 12 i te 36, ka 24.
\frac{2x^{2}+14x}{2}=\frac{24}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{14}{2}x=\frac{24}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+7x=\frac{24}{2}
Whakawehe 14 ki te 2.
x^{2}+7x=12
Whakawehe 24 ki te 2.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=12+\left(\frac{7}{2}\right)^{2}
Whakawehea te 7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{2}. Nā, tāpiria te pūrua o te \frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+7x+\frac{49}{4}=12+\frac{49}{4}
Pūruatia \frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+7x+\frac{49}{4}=\frac{97}{4}
Tāpiri 12 ki te \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{97}{4}
Tauwehea x^{2}+7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{97}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{2}=\frac{\sqrt{97}}{2} x+\frac{7}{2}=-\frac{\sqrt{97}}{2}
Whakarūnātia.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}