Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-15x+36
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-15 ab=1\times 36=36
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-12 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -15.
\left(x^{2}-12x\right)+\left(-3x+36\right)
Tuhia anō te x^{2}-15x+36 hei \left(x^{2}-12x\right)+\left(-3x+36\right).
x\left(x-12\right)-3\left(x-12\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-12\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-12 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}-15x+36=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 36}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 36}}{2}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225-144}}{2}
Whakareatia -4 ki te 36.
x=\frac{-\left(-15\right)±\sqrt{81}}{2}
Tāpiri 225 ki te -144.
x=\frac{-\left(-15\right)±9}{2}
Tuhia te pūtakerua o te 81.
x=\frac{15±9}{2}
Ko te tauaro o -15 ko 15.
x=\frac{24}{2}
Nā, me whakaoti te whārite x=\frac{15±9}{2} ina he tāpiri te ±. Tāpiri 15 ki te 9.
x=12
Whakawehe 24 ki te 2.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{15±9}{2} ina he tango te ±. Tango 9 mai i 15.
x=3
Whakawehe 6 ki te 2.
x^{2}-15x+36=\left(x-12\right)\left(x-3\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 12 mō te x_{1} me te 3 mō te x_{2}.