Whakaoti mō x
x=\frac{9\sqrt{351645}}{1190}+\frac{9}{2}\approx 8.984848442
x=-\frac{9\sqrt{351645}}{1190}+\frac{9}{2}\approx 0.015151558
Graph
Tohaina
Kua tāruatia ki te papatopenga
26775x-2975x^{2}=405
Whakamahia te āhuatanga tohatoha hei whakarea te 35x ki te 765-85x.
26775x-2975x^{2}-405=0
Tangohia te 405 mai i ngā taha e rua.
-2975x^{2}+26775x-405=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-26775±\sqrt{26775^{2}-4\left(-2975\right)\left(-405\right)}}{2\left(-2975\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2975 mō a, 26775 mō b, me -405 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26775±\sqrt{716900625-4\left(-2975\right)\left(-405\right)}}{2\left(-2975\right)}
Pūrua 26775.
x=\frac{-26775±\sqrt{716900625+11900\left(-405\right)}}{2\left(-2975\right)}
Whakareatia -4 ki te -2975.
x=\frac{-26775±\sqrt{716900625-4819500}}{2\left(-2975\right)}
Whakareatia 11900 ki te -405.
x=\frac{-26775±\sqrt{712081125}}{2\left(-2975\right)}
Tāpiri 716900625 ki te -4819500.
x=\frac{-26775±45\sqrt{351645}}{2\left(-2975\right)}
Tuhia te pūtakerua o te 712081125.
x=\frac{-26775±45\sqrt{351645}}{-5950}
Whakareatia 2 ki te -2975.
x=\frac{45\sqrt{351645}-26775}{-5950}
Nā, me whakaoti te whārite x=\frac{-26775±45\sqrt{351645}}{-5950} ina he tāpiri te ±. Tāpiri -26775 ki te 45\sqrt{351645}.
x=-\frac{9\sqrt{351645}}{1190}+\frac{9}{2}
Whakawehe -26775+45\sqrt{351645} ki te -5950.
x=\frac{-45\sqrt{351645}-26775}{-5950}
Nā, me whakaoti te whārite x=\frac{-26775±45\sqrt{351645}}{-5950} ina he tango te ±. Tango 45\sqrt{351645} mai i -26775.
x=\frac{9\sqrt{351645}}{1190}+\frac{9}{2}
Whakawehe -26775-45\sqrt{351645} ki te -5950.
x=-\frac{9\sqrt{351645}}{1190}+\frac{9}{2} x=\frac{9\sqrt{351645}}{1190}+\frac{9}{2}
Kua oti te whārite te whakatau.
26775x-2975x^{2}=405
Whakamahia te āhuatanga tohatoha hei whakarea te 35x ki te 765-85x.
-2975x^{2}+26775x=405
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2975x^{2}+26775x}{-2975}=\frac{405}{-2975}
Whakawehea ngā taha e rua ki te -2975.
x^{2}+\frac{26775}{-2975}x=\frac{405}{-2975}
Mā te whakawehe ki te -2975 ka wetekia te whakareanga ki te -2975.
x^{2}-9x=\frac{405}{-2975}
Whakawehe 26775 ki te -2975.
x^{2}-9x=-\frac{81}{595}
Whakahekea te hautanga \frac{405}{-2975} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-\frac{81}{595}+\left(-\frac{9}{2}\right)^{2}
Whakawehea te -9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{2}. Nā, tāpiria te pūrua o te -\frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-9x+\frac{81}{4}=-\frac{81}{595}+\frac{81}{4}
Pūruatia -\frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-9x+\frac{81}{4}=\frac{47871}{2380}
Tāpiri -\frac{81}{595} ki te \frac{81}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{2}\right)^{2}=\frac{47871}{2380}
Tauwehea x^{2}-9x+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{47871}{2380}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{2}=\frac{9\sqrt{351645}}{1190} x-\frac{9}{2}=-\frac{9\sqrt{351645}}{1190}
Whakarūnātia.
x=\frac{9\sqrt{351645}}{1190}+\frac{9}{2} x=-\frac{9\sqrt{351645}}{1190}+\frac{9}{2}
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}