Whakaoti mō A
A=500
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
35000 = A \times 250 - [ 15000 + ( A \times 150 ) ]
Tohaina
Kua tāruatia ki te papatopenga
35000=A\times 250-15000-A\times 150
Hei kimi i te tauaro o 15000+A\times 150, kimihia te tauaro o ia taurangi.
35000=A\times 250-15000-150A
Whakareatia te -1 ki te 150, ka -150.
35000=100A-15000
Pahekotia te A\times 250 me -150A, ka 100A.
100A-15000=35000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
100A=35000+15000
Me tāpiri te 15000 ki ngā taha e rua.
100A=50000
Tāpirihia te 35000 ki te 15000, ka 50000.
A=\frac{50000}{100}
Whakawehea ngā taha e rua ki te 100.
A=500
Whakawehea te 50000 ki te 100, kia riro ko 500.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}