Whakaoti mō x
x = \frac{21}{20} = 1\frac{1}{20} = 1.05
Graph
Tohaina
Kua tāruatia ki te papatopenga
70x-35=7\left(x+4\right)+3x
Whakamahia te āhuatanga tohatoha hei whakarea te 35 ki te 2x-1.
70x-35=7x+28+3x
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te x+4.
70x-35=10x+28
Pahekotia te 7x me 3x, ka 10x.
70x-35-10x=28
Tangohia te 10x mai i ngā taha e rua.
60x-35=28
Pahekotia te 70x me -10x, ka 60x.
60x=28+35
Me tāpiri te 35 ki ngā taha e rua.
60x=63
Tāpirihia te 28 ki te 35, ka 63.
x=\frac{63}{60}
Whakawehea ngā taha e rua ki te 60.
x=\frac{21}{20}
Whakahekea te hautanga \frac{63}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}