Whakaoti mō x
x=\frac{15}{259}\approx 0.057915058
Graph
Tohaina
Kua tāruatia ki te papatopenga
35\left(0x+1\right)-41x=25\left(2-12x\right)
Whakareatia te 0 ki te 1, ka 0.
35\left(0+1\right)-41x=25\left(2-12x\right)
Ko te tau i whakarea ki te kore ka hua ko te kore.
35\times 1-41x=25\left(2-12x\right)
Tāpirihia te 0 ki te 1, ka 1.
35-41x=25\left(2-12x\right)
Whakareatia te 35 ki te 1, ka 35.
35-41x=50-300x
Whakamahia te āhuatanga tohatoha hei whakarea te 25 ki te 2-12x.
35-41x+300x=50
Me tāpiri te 300x ki ngā taha e rua.
35+259x=50
Pahekotia te -41x me 300x, ka 259x.
259x=50-35
Tangohia te 35 mai i ngā taha e rua.
259x=15
Tangohia te 35 i te 50, ka 15.
x=\frac{15}{259}
Whakawehea ngā taha e rua ki te 259.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}