Whakaoti mō x (complex solution)
x=2+2\sqrt{59}i\approx 2+15.362291496i
x=-2\sqrt{59}i+2\approx 2-15.362291496i
Graph
Tohaina
Kua tāruatia ki te papatopenga
525=\left(19-x\right)\left(15+x\right)
Whakareatia te 35 ki te 15, ka 525.
525=285+4x-x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 19-x ki te 15+x ka whakakotahi i ngā kupu rite.
285+4x-x^{2}=525
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
285+4x-x^{2}-525=0
Tangohia te 525 mai i ngā taha e rua.
-240+4x-x^{2}=0
Tangohia te 525 i te 285, ka -240.
-x^{2}+4x-240=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-240\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 4 mō b, me -240 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-1\right)\left(-240\right)}}{2\left(-1\right)}
Pūrua 4.
x=\frac{-4±\sqrt{16+4\left(-240\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-4±\sqrt{16-960}}{2\left(-1\right)}
Whakareatia 4 ki te -240.
x=\frac{-4±\sqrt{-944}}{2\left(-1\right)}
Tāpiri 16 ki te -960.
x=\frac{-4±4\sqrt{59}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -944.
x=\frac{-4±4\sqrt{59}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-4+4\sqrt{59}i}{-2}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{59}i}{-2} ina he tāpiri te ±. Tāpiri -4 ki te 4i\sqrt{59}.
x=-2\sqrt{59}i+2
Whakawehe -4+4i\sqrt{59} ki te -2.
x=\frac{-4\sqrt{59}i-4}{-2}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{59}i}{-2} ina he tango te ±. Tango 4i\sqrt{59} mai i -4.
x=2+2\sqrt{59}i
Whakawehe -4-4i\sqrt{59} ki te -2.
x=-2\sqrt{59}i+2 x=2+2\sqrt{59}i
Kua oti te whārite te whakatau.
525=\left(19-x\right)\left(15+x\right)
Whakareatia te 35 ki te 15, ka 525.
525=285+4x-x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 19-x ki te 15+x ka whakakotahi i ngā kupu rite.
285+4x-x^{2}=525
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x-x^{2}=525-285
Tangohia te 285 mai i ngā taha e rua.
4x-x^{2}=240
Tangohia te 285 i te 525, ka 240.
-x^{2}+4x=240
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+4x}{-1}=\frac{240}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{4}{-1}x=\frac{240}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-4x=\frac{240}{-1}
Whakawehe 4 ki te -1.
x^{2}-4x=-240
Whakawehe 240 ki te -1.
x^{2}-4x+\left(-2\right)^{2}=-240+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-240+4
Pūrua -2.
x^{2}-4x+4=-236
Tāpiri -240 ki te 4.
\left(x-2\right)^{2}=-236
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-236}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=2\sqrt{59}i x-2=-2\sqrt{59}i
Whakarūnātia.
x=2+2\sqrt{59}i x=-2\sqrt{59}i+2
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}