Whakaoti mō x
x=\frac{\sqrt{70}}{2}+5\approx 9.183300133
x=-\frac{\sqrt{70}}{2}+5\approx 0.816699867
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{35}{2}=\left(x-5\right)^{2}
Whakawehea ngā taha e rua ki te 2.
\frac{35}{2}=x^{2}-10x+25
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
x^{2}-10x+25=\frac{35}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-10x+25-\frac{35}{2}=0
Tangohia te \frac{35}{2} mai i ngā taha e rua.
x^{2}-10x+\frac{15}{2}=0
Tangohia te \frac{35}{2} i te 25, ka \frac{15}{2}.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times \frac{15}{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -10 mō b, me \frac{15}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times \frac{15}{2}}}{2}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-30}}{2}
Whakareatia -4 ki te \frac{15}{2}.
x=\frac{-\left(-10\right)±\sqrt{70}}{2}
Tāpiri 100 ki te -30.
x=\frac{10±\sqrt{70}}{2}
Ko te tauaro o -10 ko 10.
x=\frac{\sqrt{70}+10}{2}
Nā, me whakaoti te whārite x=\frac{10±\sqrt{70}}{2} ina he tāpiri te ±. Tāpiri 10 ki te \sqrt{70}.
x=\frac{\sqrt{70}}{2}+5
Whakawehe 10+\sqrt{70} ki te 2.
x=\frac{10-\sqrt{70}}{2}
Nā, me whakaoti te whārite x=\frac{10±\sqrt{70}}{2} ina he tango te ±. Tango \sqrt{70} mai i 10.
x=-\frac{\sqrt{70}}{2}+5
Whakawehe 10-\sqrt{70} ki te 2.
x=\frac{\sqrt{70}}{2}+5 x=-\frac{\sqrt{70}}{2}+5
Kua oti te whārite te whakatau.
\frac{35}{2}=\left(x-5\right)^{2}
Whakawehea ngā taha e rua ki te 2.
\frac{35}{2}=x^{2}-10x+25
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
x^{2}-10x+25=\frac{35}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x-5\right)^{2}=\frac{35}{2}
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{\frac{35}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=\frac{\sqrt{70}}{2} x-5=-\frac{\sqrt{70}}{2}
Whakarūnātia.
x=\frac{\sqrt{70}}{2}+5 x=-\frac{\sqrt{70}}{2}+5
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}