Whakaoti mō x
x=115
Graph
Tohaina
Kua tāruatia ki te papatopenga
34x-34-12\left(2x-2\right)=7\times 0\times 5+2\left(225+3x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 34 ki te x-1.
34x-34-24x+24=7\times 0\times 5+2\left(225+3x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te 2x-2.
10x-34+24=7\times 0\times 5+2\left(225+3x\right)
Pahekotia te 34x me -24x, ka 10x.
10x-10=7\times 0\times 5+2\left(225+3x\right)
Tāpirihia te -34 ki te 24, ka -10.
10x-10=0\times 5+2\left(225+3x\right)
Whakareatia te 7 ki te 0, ka 0.
10x-10=0+2\left(225+3x\right)
Whakareatia te 0 ki te 5, ka 0.
10x-10=0+450+6x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 225+3x.
10x-10=450+6x
Tāpirihia te 0 ki te 450, ka 450.
10x-10-6x=450
Tangohia te 6x mai i ngā taha e rua.
4x-10=450
Pahekotia te 10x me -6x, ka 4x.
4x=450+10
Me tāpiri te 10 ki ngā taha e rua.
4x=460
Tāpirihia te 450 ki te 10, ka 460.
x=\frac{460}{4}
Whakawehea ngā taha e rua ki te 4.
x=115
Whakawehea te 460 ki te 4, kia riro ko 115.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}