Whakaoti mō y
y=4
y=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
y\times 34-yy=120
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
y\times 34-y^{2}=120
Whakareatia te y ki te y, ka y^{2}.
y\times 34-y^{2}-120=0
Tangohia te 120 mai i ngā taha e rua.
-y^{2}+34y-120=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-34±\sqrt{34^{2}-4\left(-1\right)\left(-120\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 34 mō b, me -120 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-34±\sqrt{1156-4\left(-1\right)\left(-120\right)}}{2\left(-1\right)}
Pūrua 34.
y=\frac{-34±\sqrt{1156+4\left(-120\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
y=\frac{-34±\sqrt{1156-480}}{2\left(-1\right)}
Whakareatia 4 ki te -120.
y=\frac{-34±\sqrt{676}}{2\left(-1\right)}
Tāpiri 1156 ki te -480.
y=\frac{-34±26}{2\left(-1\right)}
Tuhia te pūtakerua o te 676.
y=\frac{-34±26}{-2}
Whakareatia 2 ki te -1.
y=-\frac{8}{-2}
Nā, me whakaoti te whārite y=\frac{-34±26}{-2} ina he tāpiri te ±. Tāpiri -34 ki te 26.
y=4
Whakawehe -8 ki te -2.
y=-\frac{60}{-2}
Nā, me whakaoti te whārite y=\frac{-34±26}{-2} ina he tango te ±. Tango 26 mai i -34.
y=30
Whakawehe -60 ki te -2.
y=4 y=30
Kua oti te whārite te whakatau.
y\times 34-yy=120
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
y\times 34-y^{2}=120
Whakareatia te y ki te y, ka y^{2}.
-y^{2}+34y=120
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-y^{2}+34y}{-1}=\frac{120}{-1}
Whakawehea ngā taha e rua ki te -1.
y^{2}+\frac{34}{-1}y=\frac{120}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
y^{2}-34y=\frac{120}{-1}
Whakawehe 34 ki te -1.
y^{2}-34y=-120
Whakawehe 120 ki te -1.
y^{2}-34y+\left(-17\right)^{2}=-120+\left(-17\right)^{2}
Whakawehea te -34, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -17. Nā, tāpiria te pūrua o te -17 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-34y+289=-120+289
Pūrua -17.
y^{2}-34y+289=169
Tāpiri -120 ki te 289.
\left(y-17\right)^{2}=169
Tauwehea y^{2}-34y+289. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-17\right)^{2}}=\sqrt{169}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-17=13 y-17=-13
Whakarūnātia.
y=30 y=4
Me tāpiri 17 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}