Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
34-2x-5=2\left(x+7\right)+x
Hei kimi i te tauaro o 2x+5, kimihia te tauaro o ia taurangi.
29-2x=2\left(x+7\right)+x
Tangohia te 5 i te 34, ka 29.
29-2x=2x+14+x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+7.
29-2x=3x+14
Pahekotia te 2x me x, ka 3x.
29-2x-3x=14
Tangohia te 3x mai i ngā taha e rua.
29-5x=14
Pahekotia te -2x me -3x, ka -5x.
-5x=14-29
Tangohia te 29 mai i ngā taha e rua.
-5x=-15
Tangohia te 29 i te 14, ka -15.
x=\frac{-15}{-5}
Whakawehea ngā taha e rua ki te -5.
x=3
Whakawehea te -15 ki te -5, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}