Whakaoti mō q
q=-15
q=13
Tohaina
Kua tāruatia ki te papatopenga
-q^{2}-2q+534=339
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-q^{2}-2q+534-339=0
Tangohia te 339 mai i ngā taha e rua.
-q^{2}-2q+195=0
Tangohia te 339 i te 534, ka 195.
a+b=-2 ab=-195=-195
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -q^{2}+aq+bq+195. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-195 3,-65 5,-39 13,-15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -195.
1-195=-194 3-65=-62 5-39=-34 13-15=-2
Tātaihia te tapeke mō ia takirua.
a=13 b=-15
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(-q^{2}+13q\right)+\left(-15q+195\right)
Tuhia anō te -q^{2}-2q+195 hei \left(-q^{2}+13q\right)+\left(-15q+195\right).
q\left(-q+13\right)+15\left(-q+13\right)
Tauwehea te q i te tuatahi me te 15 i te rōpū tuarua.
\left(-q+13\right)\left(q+15\right)
Whakatauwehea atu te kīanga pātahi -q+13 mā te whakamahi i te āhuatanga tātai tohatoha.
q=13 q=-15
Hei kimi otinga whārite, me whakaoti te -q+13=0 me te q+15=0.
-q^{2}-2q+534=339
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-q^{2}-2q+534-339=0
Tangohia te 339 mai i ngā taha e rua.
-q^{2}-2q+195=0
Tangohia te 339 i te 534, ka 195.
q=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 195}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -2 mō b, me 195 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 195}}{2\left(-1\right)}
Pūrua -2.
q=\frac{-\left(-2\right)±\sqrt{4+4\times 195}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
q=\frac{-\left(-2\right)±\sqrt{4+780}}{2\left(-1\right)}
Whakareatia 4 ki te 195.
q=\frac{-\left(-2\right)±\sqrt{784}}{2\left(-1\right)}
Tāpiri 4 ki te 780.
q=\frac{-\left(-2\right)±28}{2\left(-1\right)}
Tuhia te pūtakerua o te 784.
q=\frac{2±28}{2\left(-1\right)}
Ko te tauaro o -2 ko 2.
q=\frac{2±28}{-2}
Whakareatia 2 ki te -1.
q=\frac{30}{-2}
Nā, me whakaoti te whārite q=\frac{2±28}{-2} ina he tāpiri te ±. Tāpiri 2 ki te 28.
q=-15
Whakawehe 30 ki te -2.
q=-\frac{26}{-2}
Nā, me whakaoti te whārite q=\frac{2±28}{-2} ina he tango te ±. Tango 28 mai i 2.
q=13
Whakawehe -26 ki te -2.
q=-15 q=13
Kua oti te whārite te whakatau.
-q^{2}-2q+534=339
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-q^{2}-2q=339-534
Tangohia te 534 mai i ngā taha e rua.
-q^{2}-2q=-195
Tangohia te 534 i te 339, ka -195.
\frac{-q^{2}-2q}{-1}=-\frac{195}{-1}
Whakawehea ngā taha e rua ki te -1.
q^{2}+\left(-\frac{2}{-1}\right)q=-\frac{195}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
q^{2}+2q=-\frac{195}{-1}
Whakawehe -2 ki te -1.
q^{2}+2q=195
Whakawehe -195 ki te -1.
q^{2}+2q+1^{2}=195+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
q^{2}+2q+1=195+1
Pūrua 1.
q^{2}+2q+1=196
Tāpiri 195 ki te 1.
\left(q+1\right)^{2}=196
Tauwehea q^{2}+2q+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q+1\right)^{2}}=\sqrt{196}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
q+1=14 q+1=-14
Whakarūnātia.
q=13 q=-15
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}