Aromātai
87-14x-6x^{2}
Tauwehe
-6\left(x-\frac{-\sqrt{571}-7}{6}\right)\left(x-\frac{\sqrt{571}-7}{6}\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x^{2}+74x+7-88x+80
Pahekotia te 33x^{2} me -39x^{2}, ka -6x^{2}.
-6x^{2}-14x+7+80
Pahekotia te 74x me -88x, ka -14x.
-6x^{2}-14x+87
Tāpirihia te 7 ki te 80, ka 87.
factor(-6x^{2}+74x+7-88x+80)
Pahekotia te 33x^{2} me -39x^{2}, ka -6x^{2}.
factor(-6x^{2}-14x+7+80)
Pahekotia te 74x me -88x, ka -14x.
factor(-6x^{2}-14x+87)
Tāpirihia te 7 ki te 80, ka 87.
-6x^{2}-14x+87=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-6\right)\times 87}}{2\left(-6\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{196-4\left(-6\right)\times 87}}{2\left(-6\right)}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196+24\times 87}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
x=\frac{-\left(-14\right)±\sqrt{196+2088}}{2\left(-6\right)}
Whakareatia 24 ki te 87.
x=\frac{-\left(-14\right)±\sqrt{2284}}{2\left(-6\right)}
Tāpiri 196 ki te 2088.
x=\frac{-\left(-14\right)±2\sqrt{571}}{2\left(-6\right)}
Tuhia te pūtakerua o te 2284.
x=\frac{14±2\sqrt{571}}{2\left(-6\right)}
Ko te tauaro o -14 ko 14.
x=\frac{14±2\sqrt{571}}{-12}
Whakareatia 2 ki te -6.
x=\frac{2\sqrt{571}+14}{-12}
Nā, me whakaoti te whārite x=\frac{14±2\sqrt{571}}{-12} ina he tāpiri te ±. Tāpiri 14 ki te 2\sqrt{571}.
x=\frac{-\sqrt{571}-7}{6}
Whakawehe 14+2\sqrt{571} ki te -12.
x=\frac{14-2\sqrt{571}}{-12}
Nā, me whakaoti te whārite x=\frac{14±2\sqrt{571}}{-12} ina he tango te ±. Tango 2\sqrt{571} mai i 14.
x=\frac{\sqrt{571}-7}{6}
Whakawehe 14-2\sqrt{571} ki te -12.
-6x^{2}-14x+87=-6\left(x-\frac{-\sqrt{571}-7}{6}\right)\left(x-\frac{\sqrt{571}-7}{6}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-7-\sqrt{571}}{6} mō te x_{1} me te \frac{-7+\sqrt{571}}{6} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}