Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

33t^{2}+1826t-750779=0
Whakakapia te t mō te t^{2}.
t=\frac{-1826±\sqrt{1826^{2}-4\times 33\left(-750779\right)}}{2\times 33}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 33 mō te a, te 1826 mō te b, me te -750779 mō te c i te ture pūrua.
t=\frac{-1826±4\sqrt{6402319}}{66}
Mahia ngā tātaitai.
t=\frac{2\sqrt{6402319}}{33}-\frac{83}{3} t=-\frac{2\sqrt{6402319}}{33}-\frac{83}{3}
Whakaotia te whārite t=\frac{-1826±4\sqrt{6402319}}{66} ina he tōrunga te ±, ina he tōraro te ±.
t=\sqrt{\frac{2\sqrt{6402319}}{33}-\frac{83}{3}} t=-\sqrt{\frac{2\sqrt{6402319}}{33}-\frac{83}{3}}
I te mea ko t=t^{2}, ka riro ngā otinga mā te arotake i te t=±\sqrt{t} mō t tōrunga.