Aromātai
\frac{1}{72}\approx 0.013888889
Tauwehe
\frac{1}{2 ^ {3} \cdot 3 ^ {2}} = 0.013888888888888888
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{99+1}{3}\left(-0.1\right)^{2}}{\left(-2.4\right)^{2}}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Whakareatia te 33 ki te 3, ka 99.
\frac{\frac{\frac{100}{3}\left(-0.1\right)^{2}}{\left(-2.4\right)^{2}}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Tāpirihia te 99 ki te 1, ka 100.
\frac{\frac{\frac{100}{3}\times 0.01}{\left(-2.4\right)^{2}}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Tātaihia te -0.1 mā te pū o 2, kia riro ko 0.01.
\frac{\frac{\frac{1}{3}}{\left(-2.4\right)^{2}}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Whakareatia te \frac{100}{3} ki te 0.01, ka \frac{1}{3}.
\frac{\frac{\frac{1}{3}}{5.76}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Tātaihia te -2.4 mā te pū o 2, kia riro ko 5.76.
\frac{\frac{1}{3\times 5.76}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Tuhia te \frac{\frac{1}{3}}{5.76} hei hautanga kotahi.
\frac{\frac{1}{17.28}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Whakareatia te 3 ki te 5.76, ka 17.28.
\frac{\frac{100}{1728}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Whakarohaina te \frac{1}{17.28} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{\frac{25}{432}}{\frac{4\times 6+1}{6}\left(-0.2\right)^{0}}
Whakahekea te hautanga \frac{100}{1728} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\frac{25}{432}}{\frac{24+1}{6}\left(-0.2\right)^{0}}
Whakareatia te 4 ki te 6, ka 24.
\frac{\frac{25}{432}}{\frac{25}{6}\left(-0.2\right)^{0}}
Tāpirihia te 24 ki te 1, ka 25.
\frac{\frac{25}{432}}{\frac{25}{6}\times 1}
Tātaihia te -0.2 mā te pū o 0, kia riro ko 1.
\frac{\frac{25}{432}}{\frac{25}{6}}
Whakareatia te \frac{25}{6} ki te 1, ka \frac{25}{6}.
\frac{25}{432}\times \frac{6}{25}
Whakawehe \frac{25}{432} ki te \frac{25}{6} mā te whakarea \frac{25}{432} ki te tau huripoki o \frac{25}{6}.
\frac{1}{72}
Whakareatia te \frac{25}{432} ki te \frac{6}{25}, ka \frac{1}{72}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}