Tauwehe
-\left(a-11\right)\left(a+3\right)
Aromātai
-\left(a-11\right)\left(a+3\right)
Tohaina
Kua tāruatia ki te papatopenga
-a^{2}+8a+33
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
p+q=8 pq=-33=-33
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -a^{2}+pa+qa+33. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,33 -3,11
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōrunga te p+q, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -33.
-1+33=32 -3+11=8
Tātaihia te tapeke mō ia takirua.
p=11 q=-3
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(-a^{2}+11a\right)+\left(-3a+33\right)
Tuhia anō te -a^{2}+8a+33 hei \left(-a^{2}+11a\right)+\left(-3a+33\right).
-a\left(a-11\right)-3\left(a-11\right)
Tauwehea te -a i te tuatahi me te -3 i te rōpū tuarua.
\left(a-11\right)\left(-a-3\right)
Whakatauwehea atu te kīanga pātahi a-11 mā te whakamahi i te āhuatanga tātai tohatoha.
-a^{2}+8a+33=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\times 33}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-8±\sqrt{64-4\left(-1\right)\times 33}}{2\left(-1\right)}
Pūrua 8.
a=\frac{-8±\sqrt{64+4\times 33}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
a=\frac{-8±\sqrt{64+132}}{2\left(-1\right)}
Whakareatia 4 ki te 33.
a=\frac{-8±\sqrt{196}}{2\left(-1\right)}
Tāpiri 64 ki te 132.
a=\frac{-8±14}{2\left(-1\right)}
Tuhia te pūtakerua o te 196.
a=\frac{-8±14}{-2}
Whakareatia 2 ki te -1.
a=\frac{6}{-2}
Nā, me whakaoti te whārite a=\frac{-8±14}{-2} ina he tāpiri te ±. Tāpiri -8 ki te 14.
a=-3
Whakawehe 6 ki te -2.
a=-\frac{22}{-2}
Nā, me whakaoti te whārite a=\frac{-8±14}{-2} ina he tango te ±. Tango 14 mai i -8.
a=11
Whakawehe -22 ki te -2.
-a^{2}+8a+33=-\left(a-\left(-3\right)\right)\left(a-11\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -3 mō te x_{1} me te 11 mō te x_{2}.
-a^{2}+8a+33=-\left(a+3\right)\left(a-11\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}