Whakaoti mō x
x=1
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
32x^{2}-80x+48=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 32\times 48}}{2\times 32}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 32 mō a, -80 mō b, me 48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 32\times 48}}{2\times 32}
Pūrua -80.
x=\frac{-\left(-80\right)±\sqrt{6400-128\times 48}}{2\times 32}
Whakareatia -4 ki te 32.
x=\frac{-\left(-80\right)±\sqrt{6400-6144}}{2\times 32}
Whakareatia -128 ki te 48.
x=\frac{-\left(-80\right)±\sqrt{256}}{2\times 32}
Tāpiri 6400 ki te -6144.
x=\frac{-\left(-80\right)±16}{2\times 32}
Tuhia te pūtakerua o te 256.
x=\frac{80±16}{2\times 32}
Ko te tauaro o -80 ko 80.
x=\frac{80±16}{64}
Whakareatia 2 ki te 32.
x=\frac{96}{64}
Nā, me whakaoti te whārite x=\frac{80±16}{64} ina he tāpiri te ±. Tāpiri 80 ki te 16.
x=\frac{3}{2}
Whakahekea te hautanga \frac{96}{64} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 32.
x=\frac{64}{64}
Nā, me whakaoti te whārite x=\frac{80±16}{64} ina he tango te ±. Tango 16 mai i 80.
x=1
Whakawehe 64 ki te 64.
x=\frac{3}{2} x=1
Kua oti te whārite te whakatau.
32x^{2}-80x+48=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
32x^{2}-80x+48-48=-48
Me tango 48 mai i ngā taha e rua o te whārite.
32x^{2}-80x=-48
Mā te tango i te 48 i a ia ake anō ka toe ko te 0.
\frac{32x^{2}-80x}{32}=-\frac{48}{32}
Whakawehea ngā taha e rua ki te 32.
x^{2}+\left(-\frac{80}{32}\right)x=-\frac{48}{32}
Mā te whakawehe ki te 32 ka wetekia te whakareanga ki te 32.
x^{2}-\frac{5}{2}x=-\frac{48}{32}
Whakahekea te hautanga \frac{-80}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
x^{2}-\frac{5}{2}x=-\frac{3}{2}
Whakahekea te hautanga \frac{-48}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
Whakawehea te -\frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{4}. Nā, tāpiria te pūrua o te -\frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{3}{2}+\frac{25}{16}
Pūruatia -\frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{1}{16}
Tāpiri -\frac{3}{2} ki te \frac{25}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{4}\right)^{2}=\frac{1}{16}
Tauwehea x^{2}-\frac{5}{2}x+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{4}=\frac{1}{4} x-\frac{5}{4}=-\frac{1}{4}
Whakarūnātia.
x=\frac{3}{2} x=1
Me tāpiri \frac{5}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}