Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

32x^{2}+250x-1925=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-250±\sqrt{250^{2}-4\times 32\left(-1925\right)}}{2\times 32}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 32 mō a, 250 mō b, me -1925 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-250±\sqrt{62500-4\times 32\left(-1925\right)}}{2\times 32}
Pūrua 250.
x=\frac{-250±\sqrt{62500-128\left(-1925\right)}}{2\times 32}
Whakareatia -4 ki te 32.
x=\frac{-250±\sqrt{62500+246400}}{2\times 32}
Whakareatia -128 ki te -1925.
x=\frac{-250±\sqrt{308900}}{2\times 32}
Tāpiri 62500 ki te 246400.
x=\frac{-250±10\sqrt{3089}}{2\times 32}
Tuhia te pūtakerua o te 308900.
x=\frac{-250±10\sqrt{3089}}{64}
Whakareatia 2 ki te 32.
x=\frac{10\sqrt{3089}-250}{64}
Nā, me whakaoti te whārite x=\frac{-250±10\sqrt{3089}}{64} ina he tāpiri te ±. Tāpiri -250 ki te 10\sqrt{3089}.
x=\frac{5\sqrt{3089}-125}{32}
Whakawehe -250+10\sqrt{3089} ki te 64.
x=\frac{-10\sqrt{3089}-250}{64}
Nā, me whakaoti te whārite x=\frac{-250±10\sqrt{3089}}{64} ina he tango te ±. Tango 10\sqrt{3089} mai i -250.
x=\frac{-5\sqrt{3089}-125}{32}
Whakawehe -250-10\sqrt{3089} ki te 64.
x=\frac{5\sqrt{3089}-125}{32} x=\frac{-5\sqrt{3089}-125}{32}
Kua oti te whārite te whakatau.
32x^{2}+250x-1925=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
32x^{2}+250x-1925-\left(-1925\right)=-\left(-1925\right)
Me tāpiri 1925 ki ngā taha e rua o te whārite.
32x^{2}+250x=-\left(-1925\right)
Mā te tango i te -1925 i a ia ake anō ka toe ko te 0.
32x^{2}+250x=1925
Tango -1925 mai i 0.
\frac{32x^{2}+250x}{32}=\frac{1925}{32}
Whakawehea ngā taha e rua ki te 32.
x^{2}+\frac{250}{32}x=\frac{1925}{32}
Mā te whakawehe ki te 32 ka wetekia te whakareanga ki te 32.
x^{2}+\frac{125}{16}x=\frac{1925}{32}
Whakahekea te hautanga \frac{250}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{125}{16}x+\left(\frac{125}{32}\right)^{2}=\frac{1925}{32}+\left(\frac{125}{32}\right)^{2}
Whakawehea te \frac{125}{16}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{125}{32}. Nā, tāpiria te pūrua o te \frac{125}{32} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{125}{16}x+\frac{15625}{1024}=\frac{1925}{32}+\frac{15625}{1024}
Pūruatia \frac{125}{32} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{125}{16}x+\frac{15625}{1024}=\frac{77225}{1024}
Tāpiri \frac{1925}{32} ki te \frac{15625}{1024} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{125}{32}\right)^{2}=\frac{77225}{1024}
Tauwehea x^{2}+\frac{125}{16}x+\frac{15625}{1024}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{125}{32}\right)^{2}}=\sqrt{\frac{77225}{1024}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{125}{32}=\frac{5\sqrt{3089}}{32} x+\frac{125}{32}=-\frac{5\sqrt{3089}}{32}
Whakarūnātia.
x=\frac{5\sqrt{3089}-125}{32} x=\frac{-5\sqrt{3089}-125}{32}
Me tango \frac{125}{32} mai i ngā taha e rua o te whārite.