Aromātai
3524.125
Tauwehe
\frac{233 \cdot 11 ^ {2}}{2 ^ {3}} = 3524\frac{1}{8} = 3524.125
Tohaina
Kua tāruatia ki te papatopenga
2560+\left(66-22.5\right)\left(65\times 0.7-32\right)+22.5\left(65\times 0.75-32\right)
Whakareatia te 32 ki te 80, ka 2560.
2560+43.5\left(65\times 0.7-32\right)+22.5\left(65\times 0.75-32\right)
Tangohia te 22.5 i te 66, ka 43.5.
2560+43.5\left(45.5-32\right)+22.5\left(65\times 0.75-32\right)
Whakareatia te 65 ki te 0.7, ka 45.5.
2560+43.5\times 13.5+22.5\left(65\times 0.75-32\right)
Tangohia te 32 i te 45.5, ka 13.5.
2560+587.25+22.5\left(65\times 0.75-32\right)
Whakareatia te 43.5 ki te 13.5, ka 587.25.
3147.25+22.5\left(65\times 0.75-32\right)
Tāpirihia te 2560 ki te 587.25, ka 3147.25.
3147.25+22.5\left(48.75-32\right)
Whakareatia te 65 ki te 0.75, ka 48.75.
3147.25+22.5\times 16.75
Tangohia te 32 i te 48.75, ka 16.75.
3147.25+376.875
Whakareatia te 22.5 ki te 16.75, ka 376.875.
3524.125
Tāpirihia te 3147.25 ki te 376.875, ka 3524.125.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}