Aromātai
-\frac{133}{2}=-66.5
Tauwehe
-\frac{133}{2} = -66\frac{1}{2} = -66.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{128+3}{4}-\frac{99\times 4+1}{4}
Whakareatia te 32 ki te 4, ka 128.
\frac{131}{4}-\frac{99\times 4+1}{4}
Tāpirihia te 128 ki te 3, ka 131.
\frac{131}{4}-\frac{396+1}{4}
Whakareatia te 99 ki te 4, ka 396.
\frac{131}{4}-\frac{397}{4}
Tāpirihia te 396 ki te 1, ka 397.
\frac{131-397}{4}
Tā te mea he rite te tauraro o \frac{131}{4} me \frac{397}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{-266}{4}
Tangohia te 397 i te 131, ka -266.
-\frac{133}{2}
Whakahekea te hautanga \frac{-266}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}