Whakaoti mō x
x=12
Graph
Tohaina
Kua tāruatia ki te papatopenga
314=\frac{1}{3}\times \frac{157}{50}\times 25x
Me tahuri ki tau ā-ira 3.14 ki te hautau \frac{314}{100}. Whakahekea te hautanga \frac{314}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
314=\frac{1\times 157}{3\times 50}\times 25x
Me whakarea te \frac{1}{3} ki te \frac{157}{50} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
314=\frac{157}{150}\times 25x
Mahia ngā whakarea i roto i te hautanga \frac{1\times 157}{3\times 50}.
314=\frac{157\times 25}{150}x
Tuhia te \frac{157}{150}\times 25 hei hautanga kotahi.
314=\frac{3925}{150}x
Whakareatia te 157 ki te 25, ka 3925.
314=\frac{157}{6}x
Whakahekea te hautanga \frac{3925}{150} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{157}{6}x=314
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=314\times \frac{6}{157}
Me whakarea ngā taha e rua ki te \frac{6}{157}, te tau utu o \frac{157}{6}.
x=\frac{314\times 6}{157}
Tuhia te 314\times \frac{6}{157} hei hautanga kotahi.
x=\frac{1884}{157}
Whakareatia te 314 ki te 6, ka 1884.
x=12
Whakawehea te 1884 ki te 157, kia riro ko 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}