Whakaoti mō x
x = -\frac{269}{10} = -26\frac{9}{10} = -26.9
Graph
Tohaina
Kua tāruatia ki te papatopenga
312-3x-\left(-6\right)-41-4\left(1-2x\right)=4-5x
Hei kimi i te tauaro o 3x-6, kimihia te tauaro o ia taurangi.
312-3x+6-41-4\left(1-2x\right)=4-5x
Ko te tauaro o -6 ko 6.
318-3x-41-4\left(1-2x\right)=4-5x
Tāpirihia te 312 ki te 6, ka 318.
277-3x-4\left(1-2x\right)=4-5x
Tangohia te 41 i te 318, ka 277.
277-3x-4+8x=4-5x
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 1-2x.
273-3x+8x=4-5x
Tangohia te 4 i te 277, ka 273.
273+5x=4-5x
Pahekotia te -3x me 8x, ka 5x.
273+5x+5x=4
Me tāpiri te 5x ki ngā taha e rua.
273+10x=4
Pahekotia te 5x me 5x, ka 10x.
10x=4-273
Tangohia te 273 mai i ngā taha e rua.
10x=-269
Tangohia te 273 i te 4, ka -269.
x=\frac{-269}{10}
Whakawehea ngā taha e rua ki te 10.
x=-\frac{269}{10}
Ka taea te hautanga \frac{-269}{10} te tuhi anō ko -\frac{269}{10} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}