Aromātai
\frac{78502725751}{28629151000000000000000}\approx 2.742055667 \cdot 10^{-12}
Tauwehe
\frac{151 ^ {5}}{2 ^ {15} \cdot 5 ^ {15} \cdot 31 ^ {5}} = 2.7420556673510856 \times 10^{-12}
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2862915100000}\times 210^{0}\times 1.51^{5}
Tātaihia te 310 mā te pū o -5, kia riro ko \frac{1}{2862915100000}.
\frac{1}{2862915100000}\times 1\times 1.51^{5}
Tātaihia te 210 mā te pū o 0, kia riro ko 1.
\frac{1}{2862915100000}\times 1.51^{5}
Whakareatia te \frac{1}{2862915100000} ki te 1, ka \frac{1}{2862915100000}.
\frac{1}{2862915100000}\times 7.8502725751
Tātaihia te 1.51 mā te pū o 5, kia riro ko 7.8502725751.
\frac{78502725751}{28629151000000000000000}
Whakareatia te \frac{1}{2862915100000} ki te 7.8502725751, ka \frac{78502725751}{28629151000000000000000}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}