Whakaoti mō x (complex solution)
x=\frac{3+\sqrt{115}i}{62}\approx 0.048387097+0.172964602i
x=\frac{-\sqrt{115}i+3}{62}\approx 0.048387097-0.172964602i
Graph
Tohaina
Kua tāruatia ki te papatopenga
31x^{2}-3x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 31}}{2\times 31}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 31 mō a, -3 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 31}}{2\times 31}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-124}}{2\times 31}
Whakareatia -4 ki te 31.
x=\frac{-\left(-3\right)±\sqrt{-115}}{2\times 31}
Tāpiri 9 ki te -124.
x=\frac{-\left(-3\right)±\sqrt{115}i}{2\times 31}
Tuhia te pūtakerua o te -115.
x=\frac{3±\sqrt{115}i}{2\times 31}
Ko te tauaro o -3 ko 3.
x=\frac{3±\sqrt{115}i}{62}
Whakareatia 2 ki te 31.
x=\frac{3+\sqrt{115}i}{62}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{115}i}{62} ina he tāpiri te ±. Tāpiri 3 ki te i\sqrt{115}.
x=\frac{-\sqrt{115}i+3}{62}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{115}i}{62} ina he tango te ±. Tango i\sqrt{115} mai i 3.
x=\frac{3+\sqrt{115}i}{62} x=\frac{-\sqrt{115}i+3}{62}
Kua oti te whārite te whakatau.
31x^{2}-3x+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
31x^{2}-3x+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
31x^{2}-3x=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{31x^{2}-3x}{31}=-\frac{1}{31}
Whakawehea ngā taha e rua ki te 31.
x^{2}-\frac{3}{31}x=-\frac{1}{31}
Mā te whakawehe ki te 31 ka wetekia te whakareanga ki te 31.
x^{2}-\frac{3}{31}x+\left(-\frac{3}{62}\right)^{2}=-\frac{1}{31}+\left(-\frac{3}{62}\right)^{2}
Whakawehea te -\frac{3}{31}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{62}. Nā, tāpiria te pūrua o te -\frac{3}{62} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{31}x+\frac{9}{3844}=-\frac{1}{31}+\frac{9}{3844}
Pūruatia -\frac{3}{62} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{31}x+\frac{9}{3844}=-\frac{115}{3844}
Tāpiri -\frac{1}{31} ki te \frac{9}{3844} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{62}\right)^{2}=-\frac{115}{3844}
Tauwehea x^{2}-\frac{3}{31}x+\frac{9}{3844}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{62}\right)^{2}}=\sqrt{-\frac{115}{3844}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{62}=\frac{\sqrt{115}i}{62} x-\frac{3}{62}=-\frac{\sqrt{115}i}{62}
Whakarūnātia.
x=\frac{3+\sqrt{115}i}{62} x=\frac{-\sqrt{115}i+3}{62}
Me tāpiri \frac{3}{62} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}