Whakaoti mō x
x=\frac{1}{9}\approx 0.111111111
x=\frac{1}{25}=0.04
Graph
Tohaina
Kua tāruatia ki te papatopenga
30x-16\sqrt{x}=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-16\sqrt{x}=-2-30x
Me tango 30x mai i ngā taha e rua o te whārite.
\left(-16\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-16\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
Whakarohaina te \left(-16\sqrt{x}\right)^{2}.
256\left(\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
Tātaihia te -16 mā te pū o 2, kia riro ko 256.
256x=\left(-2-30x\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
256x=4+120x+900x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-2-30x\right)^{2}.
256x-120x=4+900x^{2}
Tangohia te 120x mai i ngā taha e rua.
136x=4+900x^{2}
Pahekotia te 256x me -120x, ka 136x.
136x-900x^{2}=4
Tangohia te 900x^{2} mai i ngā taha e rua.
-900x^{2}+136x=4
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-900x^{2}+136x-4=4-4
Me tango 4 mai i ngā taha e rua o te whārite.
-900x^{2}+136x-4=0
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
x=\frac{-136±\sqrt{136^{2}-4\left(-900\right)\left(-4\right)}}{2\left(-900\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -900 mō a, 136 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-136±\sqrt{18496-4\left(-900\right)\left(-4\right)}}{2\left(-900\right)}
Pūrua 136.
x=\frac{-136±\sqrt{18496+3600\left(-4\right)}}{2\left(-900\right)}
Whakareatia -4 ki te -900.
x=\frac{-136±\sqrt{18496-14400}}{2\left(-900\right)}
Whakareatia 3600 ki te -4.
x=\frac{-136±\sqrt{4096}}{2\left(-900\right)}
Tāpiri 18496 ki te -14400.
x=\frac{-136±64}{2\left(-900\right)}
Tuhia te pūtakerua o te 4096.
x=\frac{-136±64}{-1800}
Whakareatia 2 ki te -900.
x=-\frac{72}{-1800}
Nā, me whakaoti te whārite x=\frac{-136±64}{-1800} ina he tāpiri te ±. Tāpiri -136 ki te 64.
x=\frac{1}{25}
Whakahekea te hautanga \frac{-72}{-1800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 72.
x=-\frac{200}{-1800}
Nā, me whakaoti te whārite x=\frac{-136±64}{-1800} ina he tango te ±. Tango 64 mai i -136.
x=\frac{1}{9}
Whakahekea te hautanga \frac{-200}{-1800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 200.
x=\frac{1}{25} x=\frac{1}{9}
Kua oti te whārite te whakatau.
30\times \frac{1}{25}-16\sqrt{\frac{1}{25}}+2=0
Whakakapia te \frac{1}{25} mō te x i te whārite 30x-16\sqrt{x}+2=0.
0=0
Whakarūnātia. Ko te uara x=\frac{1}{25} kua ngata te whārite.
30\times \frac{1}{9}-16\sqrt{\frac{1}{9}}+2=0
Whakakapia te \frac{1}{9} mō te x i te whārite 30x-16\sqrt{x}+2=0.
0=0
Whakarūnātia. Ko te uara x=\frac{1}{9} kua ngata te whārite.
x=\frac{1}{25} x=\frac{1}{9}
Rārangihia ngā rongoā katoa o -16\sqrt{x}=-30x-2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}