305+3 \sqrt{ (305 \left( 1-0061 \right) }
Aromātai (complex solution)
305+30\sqrt{183}i\approx 305+405.832477754i
Wāhi Tūturu (complex solution)
305
Aromātai
\text{Indeterminate}
Tohaina
Kua tāruatia ki te papatopenga
305+3\sqrt{305\left(-60\right)}
Tangohia te 61 i te 1, ka -60.
305+3\sqrt{-18300}
Whakareatia te 305 ki te -60, ka -18300.
305+3\times \left(10i\right)\sqrt{183}
Tauwehea te -18300=\left(10i\right)^{2}\times 183. Tuhia anō te pūtake rua o te hua \sqrt{\left(10i\right)^{2}\times 183} hei hua o ngā pūtake rua \sqrt{\left(10i\right)^{2}}\sqrt{183}. Tuhia te pūtakerua o te \left(10i\right)^{2}.
305+30i\sqrt{183}
Whakareatia te 3 ki te 10i, ka 30i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}