Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

301x^{2}-918x=256
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
301x^{2}-918x-256=256-256
Me tango 256 mai i ngā taha e rua o te whārite.
301x^{2}-918x-256=0
Mā te tango i te 256 i a ia ake anō ka toe ko te 0.
x=\frac{-\left(-918\right)±\sqrt{\left(-918\right)^{2}-4\times 301\left(-256\right)}}{2\times 301}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 301 mō a, -918 mō b, me -256 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-918\right)±\sqrt{842724-4\times 301\left(-256\right)}}{2\times 301}
Pūrua -918.
x=\frac{-\left(-918\right)±\sqrt{842724-1204\left(-256\right)}}{2\times 301}
Whakareatia -4 ki te 301.
x=\frac{-\left(-918\right)±\sqrt{842724+308224}}{2\times 301}
Whakareatia -1204 ki te -256.
x=\frac{-\left(-918\right)±\sqrt{1150948}}{2\times 301}
Tāpiri 842724 ki te 308224.
x=\frac{-\left(-918\right)±2\sqrt{287737}}{2\times 301}
Tuhia te pūtakerua o te 1150948.
x=\frac{918±2\sqrt{287737}}{2\times 301}
Ko te tauaro o -918 ko 918.
x=\frac{918±2\sqrt{287737}}{602}
Whakareatia 2 ki te 301.
x=\frac{2\sqrt{287737}+918}{602}
Nā, me whakaoti te whārite x=\frac{918±2\sqrt{287737}}{602} ina he tāpiri te ±. Tāpiri 918 ki te 2\sqrt{287737}.
x=\frac{\sqrt{287737}+459}{301}
Whakawehe 918+2\sqrt{287737} ki te 602.
x=\frac{918-2\sqrt{287737}}{602}
Nā, me whakaoti te whārite x=\frac{918±2\sqrt{287737}}{602} ina he tango te ±. Tango 2\sqrt{287737} mai i 918.
x=\frac{459-\sqrt{287737}}{301}
Whakawehe 918-2\sqrt{287737} ki te 602.
x=\frac{\sqrt{287737}+459}{301} x=\frac{459-\sqrt{287737}}{301}
Kua oti te whārite te whakatau.
301x^{2}-918x=256
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{301x^{2}-918x}{301}=\frac{256}{301}
Whakawehea ngā taha e rua ki te 301.
x^{2}-\frac{918}{301}x=\frac{256}{301}
Mā te whakawehe ki te 301 ka wetekia te whakareanga ki te 301.
x^{2}-\frac{918}{301}x+\left(-\frac{459}{301}\right)^{2}=\frac{256}{301}+\left(-\frac{459}{301}\right)^{2}
Whakawehea te -\frac{918}{301}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{459}{301}. Nā, tāpiria te pūrua o te -\frac{459}{301} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{918}{301}x+\frac{210681}{90601}=\frac{256}{301}+\frac{210681}{90601}
Pūruatia -\frac{459}{301} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{918}{301}x+\frac{210681}{90601}=\frac{287737}{90601}
Tāpiri \frac{256}{301} ki te \frac{210681}{90601} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{459}{301}\right)^{2}=\frac{287737}{90601}
Tauwehea x^{2}-\frac{918}{301}x+\frac{210681}{90601}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{459}{301}\right)^{2}}=\sqrt{\frac{287737}{90601}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{459}{301}=\frac{\sqrt{287737}}{301} x-\frac{459}{301}=-\frac{\sqrt{287737}}{301}
Whakarūnātia.
x=\frac{\sqrt{287737}+459}{301} x=\frac{459-\sqrt{287737}}{301}
Me tāpiri \frac{459}{301} ki ngā taha e rua o te whārite.