Whakaoti mō t
t=\frac{\sqrt{21898}}{2}+75\approx 148.989864171
t=-\frac{\sqrt{21898}}{2}+75\approx 1.010135829
Tohaina
Kua tāruatia ki te papatopenga
301+2t^{2}-300t=0
Tangohia te 300t mai i ngā taha e rua.
2t^{2}-300t+301=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-300\right)±\sqrt{\left(-300\right)^{2}-4\times 2\times 301}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -300 mō b, me 301 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-300\right)±\sqrt{90000-4\times 2\times 301}}{2\times 2}
Pūrua -300.
t=\frac{-\left(-300\right)±\sqrt{90000-8\times 301}}{2\times 2}
Whakareatia -4 ki te 2.
t=\frac{-\left(-300\right)±\sqrt{90000-2408}}{2\times 2}
Whakareatia -8 ki te 301.
t=\frac{-\left(-300\right)±\sqrt{87592}}{2\times 2}
Tāpiri 90000 ki te -2408.
t=\frac{-\left(-300\right)±2\sqrt{21898}}{2\times 2}
Tuhia te pūtakerua o te 87592.
t=\frac{300±2\sqrt{21898}}{2\times 2}
Ko te tauaro o -300 ko 300.
t=\frac{300±2\sqrt{21898}}{4}
Whakareatia 2 ki te 2.
t=\frac{2\sqrt{21898}+300}{4}
Nā, me whakaoti te whārite t=\frac{300±2\sqrt{21898}}{4} ina he tāpiri te ±. Tāpiri 300 ki te 2\sqrt{21898}.
t=\frac{\sqrt{21898}}{2}+75
Whakawehe 300+2\sqrt{21898} ki te 4.
t=\frac{300-2\sqrt{21898}}{4}
Nā, me whakaoti te whārite t=\frac{300±2\sqrt{21898}}{4} ina he tango te ±. Tango 2\sqrt{21898} mai i 300.
t=-\frac{\sqrt{21898}}{2}+75
Whakawehe 300-2\sqrt{21898} ki te 4.
t=\frac{\sqrt{21898}}{2}+75 t=-\frac{\sqrt{21898}}{2}+75
Kua oti te whārite te whakatau.
301+2t^{2}-300t=0
Tangohia te 300t mai i ngā taha e rua.
2t^{2}-300t=-301
Tangohia te 301 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{2t^{2}-300t}{2}=-\frac{301}{2}
Whakawehea ngā taha e rua ki te 2.
t^{2}+\left(-\frac{300}{2}\right)t=-\frac{301}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
t^{2}-150t=-\frac{301}{2}
Whakawehe -300 ki te 2.
t^{2}-150t+\left(-75\right)^{2}=-\frac{301}{2}+\left(-75\right)^{2}
Whakawehea te -150, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -75. Nā, tāpiria te pūrua o te -75 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-150t+5625=-\frac{301}{2}+5625
Pūrua -75.
t^{2}-150t+5625=\frac{10949}{2}
Tāpiri -\frac{301}{2} ki te 5625.
\left(t-75\right)^{2}=\frac{10949}{2}
Tauwehea t^{2}-150t+5625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-75\right)^{2}}=\sqrt{\frac{10949}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-75=\frac{\sqrt{21898}}{2} t-75=-\frac{\sqrt{21898}}{2}
Whakarūnātia.
t=\frac{\sqrt{21898}}{2}+75 t=-\frac{\sqrt{21898}}{2}+75
Me tāpiri 75 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}