Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

factor(300q-3q^{2}-100)
Pahekotia te -2q^{2} me -q^{2}, ka -3q^{2}.
-3q^{2}+300q-100=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
q=\frac{-300±\sqrt{300^{2}-4\left(-3\right)\left(-100\right)}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-300±\sqrt{90000-4\left(-3\right)\left(-100\right)}}{2\left(-3\right)}
Pūrua 300.
q=\frac{-300±\sqrt{90000+12\left(-100\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
q=\frac{-300±\sqrt{90000-1200}}{2\left(-3\right)}
Whakareatia 12 ki te -100.
q=\frac{-300±\sqrt{88800}}{2\left(-3\right)}
Tāpiri 90000 ki te -1200.
q=\frac{-300±20\sqrt{222}}{2\left(-3\right)}
Tuhia te pūtakerua o te 88800.
q=\frac{-300±20\sqrt{222}}{-6}
Whakareatia 2 ki te -3.
q=\frac{20\sqrt{222}-300}{-6}
Nā, me whakaoti te whārite q=\frac{-300±20\sqrt{222}}{-6} ina he tāpiri te ±. Tāpiri -300 ki te 20\sqrt{222}.
q=-\frac{10\sqrt{222}}{3}+50
Whakawehe -300+20\sqrt{222} ki te -6.
q=\frac{-20\sqrt{222}-300}{-6}
Nā, me whakaoti te whārite q=\frac{-300±20\sqrt{222}}{-6} ina he tango te ±. Tango 20\sqrt{222} mai i -300.
q=\frac{10\sqrt{222}}{3}+50
Whakawehe -300-20\sqrt{222} ki te -6.
-3q^{2}+300q-100=-3\left(q-\left(-\frac{10\sqrt{222}}{3}+50\right)\right)\left(q-\left(\frac{10\sqrt{222}}{3}+50\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 50-\frac{10\sqrt{222}}{3} mō te x_{1} me te 50+\frac{10\sqrt{222}}{3} mō te x_{2}.
300q-3q^{2}-100
Pahekotia te -2q^{2} me -q^{2}, ka -3q^{2}.